
tesliper
Release 0.9.3

Michał M. Więcław

Apr 04, 2022

INTRODUCTION

1 Key features 3

2 Motivation and context 5

3 References 7
3.1 Installation . 7
3.2 Conventions and Terms . 8
3.3 Graphical Interface . 9
3.4 Scripting with tesliper . 31
3.5 Advanced guide . 41
3.6 Available data genres . 50
3.7 Math and Algorithms . 53
3.8 tesliper . 59
3.9 Change Log . 174
3.10 Index . 179

Python Module Index 181

Index 183

i

ii

tesliper, Release 0.9.3

tesliper is a package for batch processing of Gaussian output files, focusing on extraction and processing of data
related to simulation of optical spectra. The software offers a Python API and a graphical user interface (GUI), allowing
for your preferred style of interaction with the computer: visual or textual. It’s main goal is to minimize time and manual
work needed to simulate optical spectrum of investigated compound.

INTRODUCTION 1

tesliper, Release 0.9.3

2 INTRODUCTION

CHAPTER

ONE

KEY FEATURES

tesliper was designed for working with multiple conformers of a compound, represented by a number of files ob-
tained from Gaussian quantum-chemical computations software. It allows you easily exclude conformers that are not
suitable for further analysis: erroneous, not optimized, of higher energy than a user-given threshold, or very similar to
some other structure in the set. Data parsed from files and data calculated may be exported to other file formats for
storage or further analysis with other tools. Below is a quick overview of features it provides:

• Batch processing of Gaussian output files regarding structure optimization and simulation of spectral properties

• Conditional, property-based filtering of conformers

• Geometry comparison via the RMSD sieve

• Calculation of Boltzmann distribution—based populations of conformers

• Simulation of IR, VCD, UV, ECD, Raman, and ROA spectra from spectral activities

• Export of extracted and calculated data to .txt, .csv, and .xlsx file formats

• Export of .gjf files for further calculations in Gaussian software

• Free & open source (OSI approved BSD 2-Clause license)

• Graphical and programmatic interfaces

3

tesliper, Release 0.9.3

4 Chapter 1. Key features

CHAPTER

TWO

MOTIVATION AND CONTEXT

Simulation of optical spectra of organic compounds becomes one of the routine tasks for chemical analysts – it is a
necessary step in one of the increasingly popular methods of establishing compound’s absolute configuration. However,
the process of obtaining a simulated spectrum may be cumbersome, as it usually involves analyzing a large number of
potentially stable conformers of the studied molecule. tesliper was created to aid in such work.

It should be noted that tesliper is not the only software that is capable of providing a simulated spectrum, given output
of quantum-chemical computations. The table below summarizes other available GUI tools and compares features they
offer. Among listed tesliper is the only one that is open source and allows to easily filter parsed data.

Table 1: How does tesliper fit into the market?
Tes-
liper

SpecDis1 CD-
specTech2

Com-
puteVOA3

GaussView4 Chem-
Craft5

Free XXX XXX XXX
Open Source XXX
Batch Processing XXX XXX XXX .gjf export .gjf modif.
Geometry Compari-
son

XXX XXX XXX

Averaging XXX XXX XXX
Conditional Filtering XXX
Job File Creation XXX XXX XXX XXX
Electronic Spectra XXX XXX XXX XXX
Scattering Spectra XXX XXX XXX XXX XXX
Multi-platform XXX XXX XXX XXX needs wine
Conformational
Search

XXX optional

Molecule Visualiza-
tion

XXX XXX XXX

1 SpecDis: T. Bruhn, A. Schaumlöffel, Y. Hemberger, G. Pescitelli, SpecDis version 1.71, Berlin, Germany, 2017, http://specdis-software.jimdo.
com

2 CDspecTech: C. L. Covington, P. L. Polavarapu, Chirality, 2017, 29, 5, p. 178, DOI: 10.1002/chir.22691
3 ComputeVOA: E. Debie, P. Bultinck, L. A. Nafie, R. K. Dukor, BioTools Inc., Jupiter, FL, 2010, https://biotools.us/software-2
4 GaussView: R. Dennington, T. A. Keith, J. M. Millam, Semichem Inc., GaussView version 6.1, Shawnee Mission, KS, 2016
5 ChemCraft: https://www.chemcraftprog.com

5

http://specdis-software.jimdo.com
http://specdis-software.jimdo.com
https://doi.org/10.1002/chir.22691
https://biotools.us/software-2
https://www.chemcraftprog.com

tesliper, Release 0.9.3

6 Chapter 2. Motivation and context

CHAPTER

THREE

REFERENCES

3.1 Installation

3.1.1 GUI for Windows

For Windows users that only intend to use graphical interface, tesliper is available as a standalone .exe application,
available for download from the latest release under the Assets section at the bottom of the page. No installation is
required, just double-click the downloaded Tesliper.exe file to run the application.

Unfortunately, a single-file installation is not available for unix-like systems. Please follow a terminal-based installation
instructions below.

3.1.2 Install from terminal

tesliper is a Python package distributed via PyPI. You can install it to your python distribution simply by running:

python -m pip install tesliper

in your terminal. This will download and install tesliper along with it’s essential dependencies. A graphical interface
have an additional dependency, but it may be easily included in your installation if you use python -m pip install
tesliper[gui] instead. Some users of unix-like systems may also need to instal tkinter manually, if it is not
included in their distribution by default. Please refer to relevant online resources on how to do this in your system, if
that is your case.

Note: Reminder for zsh users to quote the braces like this 'tesliper[gui]' or like this tesliper\[gui] when
installing extras. This is necessary, because normally zsh uses some[thing] syntax for pattern matching.

3.1.3 Requirements

This software needs at least Python 3.6 to run. It also uses some additional packages:

numpy
openpyxl
matplotlib (optional, for GUI)

Note: tesliper uses tkinter to deliver the graphical interface. It is included in most Python distributions, but
please be aware, that some might miss it. You will need to install it manually in such case.

7

https://github.com/mishioo/tesliper/releases/latest/
https://pypi.org/project/tesliper/

tesliper, Release 0.9.3

3.2 Conventions and Terms

3.2.1 Reading and writing

tesliper was designed to deal with multiple conformers of a single molecule. It identifies conformers using a stem of
an extracted file (i.e. its filename without extension). When files with identical names (save extension) are extracted in
course of subsequent Tesliper.extract() calls (or in recursive extraction, see method’s documentation), they are
treated as the same conformer. This enables to join data from subsequent calculations steps, e.g. geometry optimization,
vibrational spectra simulation, and electronic spectra simulation.

Note: If specific data genre is available from more than one file, only recently extracted values will be stored.

Also, writing extracted and calculated data to files is done in batch, as usually multiple files are produced. Hence,
tesliper will chose names for these files automatically, only allowing to specify output directory (as Tesliper.
output_dir attribute). If you need more control over this process, you will need to use one of the writer objects
directly. These are easily available via the writer_base.writer() factory function.

3.2.2 Handling data

tesliper stores multiple data entries of various types for each conformer. To prevent confusion with Python’s data
type and with data itself, tesliper refers to specific kinds of data as genres. Genres in code are represented by specific
strings, used as identifiers. To learn about data genres known to tesliper, see documentation for GaussianParser,
which lists them.

Note: Given the above, you may wonder why is it genres and not just kinds of data then? The reason is that naming
things is hard (one of the only two hard things in Computer Science, as Phil Karlton said). As of time of deciding on
this name, I did not come up with the second one. Hopefully, this small oddity will not bother you too much.

tesliper may not work properly when used to process data concerning different molecules (i.e. having different
number of atoms, different number of degrees of freedom, etc.). If you want to use it for such purpose anyway, you
may set Tesliper.conformers.allow_data_inconsistency to True. tesliper will then stop complaining and
try to do its best.

3.2.3 Glossary

genre A specific kind of data, e.g. SCF energy, dipole strengths, atoms’ positions in space, or command used for
calculations. Represented in code by a short string. Not to be confused with Python’s data type. See Available
data genres.

trimming Internally marking certain conformers as not kept. tesliper provides an easy way to trim conformers to
user’s needs, see Filtering conformers.

kept Conformers may be internally marked as kept or not kept. Kept conformers will be normally processed by
tesliper, not kept conformers will be ignored. See Conformers.kept.

arrayed About data turned into an instance of DataArray-like object, usually by Conformers’ method of the same
name. See Conformers.arrayed().

data array Type of objects used by tesliper to handle data read from multiple conformers. The same data array
class may be used to represent more than one genre. Sometimes referred to as DataArray-like classes or objects.
See arrays.

8 Chapter 3. References

https://www.karlton.org/2017/12/naming-things-hard/

tesliper, Release 0.9.3

data inconsistency An event of data having non-uniform properties, e.g. when number of values doesn’t match num-
ber of conformers, or when some conformers provide a different number of values than other conformers for a
particular data genre. See array_base.

3.3 Graphical Interface

This part discusses the use of the Graphical User Interface (GUI). For tutorial on using tesliper in Python scripts,
see tutorial.

On Windows system you may start the GUI by downloading and double-clicking Tesliper.exe file available in the
latest release, as described in the Installation section. Executable files are not available for other systems, unfortunately,
but you may start the GUI from the command line as well:

$ python -m pip install tesliper[gui] # only once
$ tesliper-gui # starts GUI

Note: If you’d like to start the graphical interface from the local copy, you may also run it as a module with python
-m tesliper.gui.

Please note that the first launch may take additional time. After the application starts, a window like the one bellow
will appear. It’s actual looks will depend on your operating system.

The Interface is divided in two parts: controls on the left and views (initially empty) on the right. Controls panel are
further divided into sections, some of which may be collapsed by clicking on the section title (those with a small arrow
on the left). Each section will be described further in this tutorial, in the appropriate section.

There are tree views available: Extracted data and Energies list summarize all conformers read from files.
Extracted data details what data is available and shows status of calculations for each conformer. Energies list

3.3. Graphical Interface 9

https://github.com/mishioo/tesliper/releases/latest/

tesliper, Release 0.9.3

shows values of conformers’ energies calculated by quantum chemical software and derived values: Boltzmann factors
and conformers’ populations.

3.3.1 Reading files

tesliper supports reading data from computations performed using Gaussian software. To load data, use controls in
the Extract data section. Choose files button allows you to select individual files to read using the popup dialog.
Choose folder button shows a similar dialog, but allowing you to select a single directory - all Gaussian output files
in this directory (but not subdirectories) will be read. Finally, using the Recursive button will also read files form all
subdirectories, recursively.

Note: Make sure you do not have mixed .log and .out files in the directory, when using Choose folder button.

Once you select files or directory and confirm your selection, the process of data extraction will start and Extract data
view will be updated for each read conformer. It will show if calculation job terminated normally (Termination), if
conformer’s structure was optimized and if optimization was successful (Opt), if extended set of energies is available
(Energy), what spectral data it available (IR, VCD, UV, ECD, Raman, ROA), how many imaginary frequencies are reported
for conformer (Imag), and what is conformer’s stoichiometry (Stoichiometry).

10 Chapter 3. References

tesliper, Release 0.9.3

When data extraction is finished, the status barr att the bottom will show Idle again. After reading first portion of
files, you may tick the Ignore unknown conformers option. When this option is ticked, tesliper will only read
files that correspond to conformers it already knows (judging by the filename).

3.3.2 Trimming conformers

Conformers may be marked as kept not kept (trimmed). Only kept conformers are processed by tesliper, trimmed
ones are ignored. This mechanism allows you to select which conformers should be included in the final averaged
spectrum, etc. Trimmed conformers are shown in gray.

Kept conformers section shows how many conformers contain certain data and allows to easily keep/trim whole
groups of conformers, using keep and trim buttons beside the appropriate group. You may also keep/trim individual
conformers by ticking/unticking checkboxes beside the conformers name (left of Filenames column).

After finished data extraction and after each manual trimming, auto-trimming is performed to make sure corrupted or
invalid conformers are not accidentally kept. Checkboxes in the Auto-trim subsection, shown below, control which
conformers should be always trimmed.

Tip: Incomplete entries are conformers that miss some data, which other conformers include, e.g. those that were

3.3. Graphical Interface 11

tesliper, Release 0.9.3

left out in one of calculations steps. Inconsistent data sizes indicates that some multi-value data has different
number of data points than in case of other conformers. This usually suggests that conformer in question is not actually
a conformer but a different molecule.

3.3.3 Trimming with sieves

The Energies and structure section, described in this part, is related with the Energies list view. This view
shows, as the name suggests, list of energies for each conformer and energies-derived values.

Using a Show: drop-down menu you may select a different energies-derived data to show in the view. Delta is
conformer’s energy difference to the most stable (lowest-energy) conformer (in kcal/mol units), Min. Boltzmann
factor is conformer’s Boltzmann factor in respect to the most stable conformer (unitless) and Popuation is population
of conformers according to the Boltzmann distribution (in perecnt). Original Energy values are shown in Hartree units.

12 Chapter 3. References

tesliper, Release 0.9.3

Both types of sieves provided depend on the selected value of the Use: drop-down menu. It determines, which energy
values are used by the sieves. Only available energies wil be shown in the list. In case their names are not intuitive
enough, here is the explanation:

Thermal: sum of electronic and thermal Energies;
Enthalpy: sum of electronic and thermal Enthalpies;
Gibbs: sum of electronic and thermal Free Energies;
SCF: energy calculated with the self-consistent field method;
Zero-Point: sum of electronic and zero-point Energies.

3.3. Graphical Interface 13

tesliper, Release 0.9.3

The Range sieve lets you to trim conformers that have a current Show: value outside of the specified range. After
you fill the Minimum and Maximum fields to match your needs, click Trim to... button to perform trimming. The
example below shows trimming of conformers, which Free Energy-derived population is below 1%. Please note that
valuesin the Energies list are recalculated and Minimum and Maximum fields are updated to show real current max
and min values.

The RMSD Sieve lets you mathematically compare structures of conformers and trim duplicates and almost-duplicates.
RMSD stands for root-mean-square deviation of atomic positions and is a conformers similarity measure. The sieve
calculates the average distance between atoms of two conformers and trims the less stable (higher-energy) conformer
of the two, if the resulting RMSD value is smaller than value ot the Threshold field.

14 Chapter 3. References

tesliper, Release 0.9.3

Calculating an RMSD value is quite resource-costly. To assure efficient trimming, each conformer is compared only
with conformers inside its energy window, defied by the Window size filed value. Conformers of energy this much
higher or lower are automatically considered different.

3.3.4 Temperature of the system

The Energies and structure section also allows you to specify the temperature of the studied system. This param-
eter is important for calculation of the Boltzmann distribution of conformers, which is used to estimate conformers’
population and average conformers’ spectra. The default value is the room temperature, expressed as 298.15 Kelvin
(25.0∘C). Changing this value will trigger automatic recalculation of Min. Boltzmann factor and Population
values, and average spectra will be redrawn.

New in version 0.9.1: The Temperature entry allowing to change the temperature value.

3.3.5 Spectra simulation

Calculate Spectra controls section and Spectra view tab allow to preview the simulation of selected spectrum
type with given parameters.

The Spectra view tab is initially empty, but when you select one of the available Spectra types, Settings sub-
section will become enabled and the spectrum will be drawn.

3.3. Graphical Interface 15

tesliper, Release 0.9.3

Tip: You can turn off automatic recalculation of the spectrum by unchecking the Live preview box.

Beginning and end of the simulated spectral range may be set using Start and Stop fields. The view on the right
will match these boundaries. Please note that Start must have lower value than Stop. There is also a Step field that
allows you to adjust points density in the simulated spectrum.

16 Chapter 3. References

tesliper, Release 0.9.3

Width field defines a peak width in the simulated spectrum. It exact meaning depends on the chosen fitting function (see
below). For gaussian fitting Width is interpreted as half width of the peak at 1

𝑒 of its maximum value (HW1OeM).
For lorentzian function it is interpreted as half width at half maximum height of the peak (HWHM).

Tip: You may change fields’ values with the mouse wheel. Point the field with mouse cursor and allow for a small
delay before switching form the scroll mode to the value-changing mode. Move the mouse cursor away from the field
to switch back.

3.3. Graphical Interface 17

tesliper, Release 0.9.3

Finally, you may choose the fitting function used to simulate the spectrum from the calculated intensities values - this
will have a big impact on simulated peaks’ shape. Two such functions are available: gaussian and lorentzian functions.
Usually lorentzian function is used to simulate vibrational spectra and gaussian function for electronic spectra.

The default spectra preview is a Single file preview that allows you to see the simulated spectrum for the selected

18 Chapter 3. References

tesliper, Release 0.9.3

conformer. You may change the conformer to preview using the drop-down menu shown in the screenshot below.

When in a Single file preview, spectral activities used to simulate the spectrum are also shown on the right. You
may turn this off by unticking the Show activities box.

You can also preview an population-weighted average spectrum of all kept conformers, by selecting Average by

3.3. Graphical Interface 19

tesliper, Release 0.9.3

energy. The drop-down menu lets you select the energies that tesliper should use to calculate conformers popula-
tions.

The final option is to show all kept conformers at once by selecting Stack by overview option. The drop-down
menu allows to choose a color scheme for the stacked spectra lines.

20 Chapter 3. References

tesliper, Release 0.9.3

3.3.6 Comparing with experiment

It’s possible to and an overlay with the experimental spectrum to Single file and Average by energy previews. To
load an experimental spectrum, use Load from file button in the Experimental spectrum subsection. tesliper
can read spectrum in the .txt (or .xy) file format. Binary .spc formats are not supported.

When you choose the experimental spectrum file, it’s curve is drown on the right with respect to the Start and Stop
bounds. Red color is used for the experiment. In case of a significant difference in the magnitude of intensity in both
spectra, the second scale will be added to the drawing.

3.3. Graphical Interface 21

tesliper, Release 0.9.3

The scale of the simulated values may be automatically adjusted to roughly match the experiment with the Auto-scale
button. It may be also adjusted manually by changing the value of the Scaling field.

22 Chapter 3. References

tesliper, Release 0.9.3

Similarly, Auto-shift button and Offset field let you to adjust simulated spectrum’s position on the x-axis. Positive
Offset shifts the spectrum bathochromically, a negative one shifts it hypsochromically.

3.3. Graphical Interface 23

tesliper, Release 0.9.3

Scaling and Offset values are remembered for the current spectra type, just like the other parameters.

24 Chapter 3. References

tesliper, Release 0.9.3

3.3.7 Data export

Calculated and extracted data may be exported to disk in three different formats: text files with Export to .txt
button, csv files with Export to .csv button and Excel files with Export to .xlsx button. Clicking on any of
those will bring up the Export... dialog.

At the top of the Export... dialog is displayed the path to the currently selected output directory. It may be changed
by clicking on the Browse button and selecting a new destination. Files generated by tesliper will be written to this
directory.

On the left side of the dialog window you may select what type of data you want to export by ticking appropriate
boxes. Once you hover over the certain category, more detailed list of available data will be shown on the right. By
ticking/unticking selected boxes you can fine-tune what should be written to disk.

3.3. Graphical Interface 25

tesliper, Release 0.9.3

In the Spectra category, beside each available spectra type, there is a note that informs if calculation parameters were
altered by the user. Spectra will be recalculated with current parameters upon the export confirmation.

26 Chapter 3. References

tesliper, Release 0.9.3

3.3.8 Creating Gaussian input

Clicking on the Create .gjf files... will open a dialog window that lets you setup a next step of calculations to
conduct with the Gaussian software.

Similarly to the previews one, this dialog also features a Path field that specifies the output directory, which may
be changed by clicking on the Browse button. Bellow it is the Geometry type drop-down menu that allows you to
select, which geometry specification should be used in the new input files. Input is the geometry used as an input in
the extracted .log/.out files, Last read is the one that was lastly encountered in these files. Optimized is the geometry
marked as optimized by Gaussian, but it is only available from the successful optimization calculations. You also need
to specify the Charge and the Multiplicity of the molecule.

Below are the Route and Comment fields. The first one specifies the calculation directives for the Gaussian software.
The second one is a title section required by GAussian.

3.3. Graphical Interface 27

tesliper, Release 0.9.3

Further below is the expandable Link0 commands panel that allows to specify Link 0 directives, which define location
of scratch files, memory usage, etc. Select a command name from the drop-down menu, filed on right will show a hint
about its purpose.

Provide a value in the input filed and click a + button to add a command. It will be added to the list below. You can
update the selected command by providing a new value and clicking the + button again or remove it by clicking the -
button.

28 Chapter 3. References

tesliper, Release 0.9.3

Path-like commands may be parametrized: ${conf} will be substituted with the name of conformer and ${num} will
be substituted with the sequential number.

Finally, you can add a post-geometry specification. It will be written to the end of each .gjf file.

3.3. Graphical Interface 29

tesliper, Release 0.9.3

3.3.9 Saving session

You can save a session (all data, along with current trimmed and parameters) with a Save session button. A popup
dialog will be opened, where you can specify a target session file location.

To load previously saved session use the Load session button. You can also discard all currently held data by clicking
the Clear session button.

30 Chapter 3. References

tesliper, Release 0.9.3

Warning: Loading and clearing session cannot be undone! A confirmation dialog will be displayed for those
actions.

3.4 Scripting with tesliper

This part discusses basics of using Python API. For tutorial on using a Graphical Interface, see gui.

tesliper provides a Tesliper class as a main entry point to its functionality. This class allows you to easily perform
any typical task: read and write files, filter data, calculate and average spectra. It is recommended to read Conventions
and Terms to get a general idea of what to expect. The next paragraphs will introduce you to basic use cases with
examples and explanations. The examples do not use real data, but simplified mockups, to not obscure the logic
presented.

from tesliper import Tesliper

extract data from Gaussian output files
tslr = Tesliper(input_dir="./opt_and_freq")
tslr.extract()

conditional filtering of conformers
tslr.conformers.trim_non_normal_termination()
tslr.conformers.trim_not_optimized()
tslr.conformers.trim_imaginary_frequencies()
tslr.conformers.trim_to_range("gib", maximum=10, attribute="deltas")
tslr.conformers.trim_rmsd(threshold=1.0, window_size=0.5, energy_genre="gib")

calculate and average spectra, export data
tslr.calculate_spectra()
tslr.average_spectra()
tslr.export_energies(fmt="txt")
tslr.export_averaged(fmt="csv")

3.4.1 Reading files

After importing Tesliper class, we instantiate it with an input_dir parameter, which is a path to the directory contain-
ing output files from quantum chemical calculations software. You may also provide an output_dir parameter, defining
where tesliper should write the files it generates. Both of those parameters are optional and default to the current
working directory, if omitted. You may also provide a wanted_files parameter, which should be a list of filenames that
Tesliper should parse, ignoring any other files present in input_dir. Omitting wanted_files means that no file should
be ignored.

Note: Tesliper accepts also quantum_software parameter, which is a hint for tesliper on how it should parse out-
put files it reads. However, only Gaussian software is supported out-of-the-box, and quantum_software="gaussian"
is a default value. If you wish to use tesliper to work with another qc package, you will need to define a custom
parser that subclasses the ParserBase class. Refer to its documentation for more information.

You can extract data from the files in output_dir using Tesliper.extract() method. Tesliper.extract() re-
spects input_dir and wanted_files given to Tesliper, but path and wanted_files parameters provided to the method

3.4. Scripting with tesliper 31

tesliper, Release 0.9.3

call will take precedence. If you would like to read files in the whole directory tree, you may perform a recursive
extraction, using extract(recursive=True). So assuming a following directory structure:

project
optimization

conf_one.out
conf_two.out
conf_three.out

vibrational
conf_one.out
conf_two.out
conf_three.out

you could use any of the following to get the same effect.

option 1: change *input_dir*
tslr = Tesliper(input_dir="./project/optimization")
tslr.extract()
tslr.input_dir = "./project/vibrational"
tslr.extract()

option 2: override *input_dir* only for one call
tslr = Tesliper(input_dir="./project/optimization")
tslr.extract()
tslr.extract(path="./project/vibrational")

option 3: read the whole tree
tslr = Tesliper(input_dir="./project")
tslr.extract(recursive=True)

tesliper will try to guess the extension of files it should parse: e.g. Gaussian output files may have “.out” or “.log”
extension. If those are mixed in the source directory, an exception will be raised. You can prevent this by providing the
extension parameter, only files with given extension will be parsed.

project
conf_one.out
conf_two.log

tslr = Tesliper(input_dir="./project")
tslr.extract() # raises ValueError
tslr.extract(extension="out") # ok

3.4.2 Filtering conformers

Tesliper.extract() will read and parse files it thinks are output files of the quantum chemical software and update
a Tesliper.conformers internal data storage. It is a dict-like Conformers instance, that stores data for each
conformer in a form of an ordinary dict. This inner dict uses genre names as keys and data as values (the form
of which depends on the genre itself). Conformers provide a number of methods for filtering conformers it knows,
allowing to easily hide data that should excluded from further analysis. tesliper calls this process a trimming. The
middle part of the first code snippet are example of trimming conformers:

32 Chapter 3. References

tesliper, Release 0.9.3

tslr.conformers.trim_non_normal_termination()
tslr.conformers.trim_not_optimized()
tslr.conformers.trim_imaginary_frequencies()
tslr.conformers.trim_to_range("gib", maximum=10, attribute="deltas")
tslr.conformers.trim_rmsd(threshold=1.0, window_size=0.5, energy_genre="gib")

As you may suspect, trim_non_normal_termination() hides data from calculations that did not ter-
minate normally, trim_not_optimized() hides data from conformers that are not optimized, and
trim_imaginary_frequencies() hides data from conformers that have at least one imaginary frequency.
More trimming methods is described below.

Conformers hidden are not kept. Information about which conformers are kept and not kept is stored in Conformers.
kept attribute, which may also be manipulated more directly. More on this topic will be explained later.

As mentioned earlier, Tesliper.conformers is a dict-like structure, and as such offers a typical functionality of
Python’s dicts. However, checking for presence with conf in tslr.conformers or requesting a view with standard
keys(), values(), or items()will operate on the whole data set, ignoring any trimming applied earlier. Conformers
class offers additional kept_keys(), kept_values(), and kept_items() methods, that return views that acknowl-
edge trimming.

Trimming methods

There is a number of those methods available for you, beside those mentioned above. Below you will find them listed
with a short summary and a link to a more comprehensive explanation in the method’s documentation.

trim_incomplete() Filters out conformers that doesn’t contain data for as many expected genres as other conform-
ers.

trim_imaginary_frequencies() Filters out conformers that contain imaginary frequencies (any number of nega-
tive frequency values).

trim_non_matching_stoichiometry() Filters out conformers that have different stoichiometry than expected.

trim_not_optimized() Filters out conformers that failed structure optimization.

trim_non_normal_termination() Filters out conformers, which calculation job did not terminate normally (was
erroneous or interrupted).

trim_inconsistent_sizes() Filters out conformers that have iterable data genres in different size than most con-
formers. Helpful when InconsistentDataError occurs.

trim_to_range() Filters out conformers that have a value of some specific data or property outside of the given
range, e.g. their calculated population is less than 0.01.

trim_rmsd() Filters out conformers that are identical to another conformer, judging by a given threshold of the root-
mean-square deviation of atomic positions (RMSD).

select_all() Marks all conformers as kept.

reject_all() Marks all conformers as not kept.

3.4. Scripting with tesliper 33

tesliper, Release 0.9.3

Manipulating Conformers.kept

Information, which conformer is kept and which is not, is stored in the Conformers.kept attribute. It is a list of
booleans, one for each conformer stored, defining which conformers should be processed by tesliper.

assuming "conf_two" has imaginary frequencies
tslr.conformers.trim_imaginary_frequencies()
tslr.conformers.kept == [True, False, True] # True
tslr.export_data(["genres", "to", "export"])
only files for "conf_one" and "conf_three" are generated

Conformers.kept may be modified using trimming methods described earlier, but also more directly: by setting it
to a new value. Firstly, it is the most straightforward to just assign a new list of boolean values to it. This list should
have the same number of elements as the number of conformers contained. A ValueError is raised if it doesn’t.

>>> tslr.conformers.kept
[True, True, True]
>>> tslr.conformers.kept = [False, True, False]
>>> tslr.conformers.kept
[False, True, False]
>>> tslr.conformers.kept = [False, True, False, True]
Traceback (most recent call last):
...
ValueError: Must provide boolean value for each known conformer.
4 values provided, 3 excepted.

Secondly, list of filenames of conformers intended to be kept may be given. Only these conformers will be kept. If
given filename is not in the underlying tslr.conformers’ dictionary, KeyError is raised.

>>> tslr.conformers.kept = ['conf_one']
>>> tslr.conformers.kept
[True, False, False]
>>> tslr.conformers.kept = ['conf_two', 'other']
Traceback (most recent call last):
...
KeyError: Unknown conformers: other.

Thirdly, list of integers representing conformers’ indices may be given. Only conformers with specified indices will
be kept. If one of given integers can’t be translated to conformer’s index, IndexError is raised. Indexing with negative
values is not supported currently.

>>> tslr.conformers.kept = [1, 2]
>>> tslr.conformers.kept
[False, True, True]
>>> tslr.conformers.kept = [2, 3]
Traceback (most recent call last):
...
IndexError: Indexes out of bounds: 3.

Fourthly, assigning True or False to this attribute will mark all conformers as kept or not kept respectively.

>>> tslr.conformers.kept = False
>>> tslr.conformers.kept
[False, False, False]

(continues on next page)

34 Chapter 3. References

tesliper, Release 0.9.3

(continued from previous page)

>>> tslr.conformers.kept = True
>>> tslr.conformers.kept
[True, True, True]

Warning: List of kept values may be also modified by setting its elements to True or False. It is advised against,
however, as a mistake such as tslr.conformers.kept[:2] = [True, False, False] will break some func-
tionality by forcibly changing size of tslr.conformers.kept list.

Trimming temporarily

Conformers provide two convenience context managers for temporarily trimming its data: untrimmed and
trimmed_to(). The first one will simply undo any trimming previously done, allowing you to operate on the full
data set or apply new, complex trimming logic. When Python exits untrimmed context, previous trimming is restored.

>>> tslr.conformers.kept = [False, True, False]
>>> with tslr.conformers.untrimmed:
>>> tslr.conformers.kept
[True, True, True]
>>> tslr.conformers.kept
[False, True, False]

The second one temporarily applies an arbitrary trimming, provided as a parameter to the trimmed_to() call. Any
value normally accepted by Conformers.kept may be used here.

>>> tslr.conformers.kept = [True, True, False]
>>> with tslr.conformers.trimmed_to([1, 2]):
>>> tslr.conformers.kept
[False, True, True]
>>> tslr.conformers.kept
[True, True, False]

Tip: To trim conformers temporarily without discarding a currently applied trimming, you may use:

with tslr.conformers.trimmed_to(tslr.conformers.kept):
... # temporary trimming upon the current one

3.4.3 Simulating spectra

To calculate a simulated spectra you will need to have spectral activities extracted. These will most probably come
from a freq or td Gaussian calculation job, depending on a genre of spectra you would like to simulate. tesliper can
simulate IR, VCD, UV, ECD, Raman, and ROA spectra, given the calculated values of conformers’ optical activity.
When you call Tesliper.calculate_spectra() without any parameters, it will calculate spectra of all available
genres, using default activities genres and default parameters, and store them in the Tesliper.spectra dictionary.
Aside form this, the spectra calculated are returned by the method.

You can calculate a specific spectra genres only, by providing a list of their names as a parameter to the Tesliper.
calculate_spectra() call. Also in this case a default activities genres and default parameters will be used to cal-
culate desired spectra, see Activities genres and Calculation parameters below to learn how this can be customized.

3.4. Scripting with tesliper 35

tesliper, Release 0.9.3

ir_and_uv = tslr.calculate_spectra(["ir", "uv"])
assert ir_and_uv["ir"] is tslr.spectra["ir"]

Calculation parameters

tesliper uses Lorentzian or Gaussian fitting function to simulate spectra from corresponding optical activities values.
Both of these require to specify a desired width of peak, as well as the beginning, end, and step of the abscissa (x-axis
values). If not told otherwise, tesliper will use a default values for these parameters and a default fitting function for
a given spectra genre. These default values are available via Tesliper.standard_parameters and are as follows.

Table 1: Default calculation parameters
Parameter IR, VCD, Raman, ROA UV, ECD
width 6 [cm−1] 0.35 [eV]
start 800 [cm−1] 150 [nm]
stop 2900 [cm−1] 800 [nm]
step 2 [cm−1] 1 [nm]
fitting lorentzian() gaussian()

You can change the parameters used for spectra simulation by altering values in the Tesliper.parameters dictionary.
It stores a dict of parameters’ values for each of spectra genres (“ir”, “vcd”, “uv”, “ecd”, “raman”, and “roa”). start,
stop, and step expect its values to by in cm−1 units for vibrational and scattering spectra, and nm units for electronic
spectra. width expects its value to be in cm−1 units for vibrational and scattering spectra, and eV units for electronic
spectra. fitting should be a callable that may be used to simulate peaks as curves, preferably one of: gaussian() or
lorentzian().

change parameters' values one by one
tslr.parameters["uv"]["step"] = 0.5
tslr.parameters["uv"]["width"] = 0.5

tslr.parameters["vcd"].update(# or with an update
{"start": 500, "stop": 2500, "width": 2}

)

"fitting" should be a callable
from tesliper import lorentzian
tslr.parameters["uv"]["fitting"] = lorentzian

Table 2: Descriptions of parameters
Parameter type Description
width float or int the beginning of the spectral range
start float or int the end of the spectral range
stop float or int step of the abscissa
step float or int width of the peak
fitting Callable function used to simulate peaks as curves

Warning: When modifying Tesliper.parameters be careful to not delete any of the key-value pairs. If you
need to revert to standard parameters’ values, you can just reassign them to Tesliper.standard_parameters.

36 Chapter 3. References

https://en.wikipedia.org/wiki/Cauchy_distribution
https://en.wikipedia.org/wiki/Normal_distribution

tesliper, Release 0.9.3

tslr.parameters["ir"] = {
... "start": 500, "stop": 2500, "width": 2
... } # this will cause problems!
revert to default values
tslr.parameters["ir"] = tslr.standard_parameters["ir"]

Activities genres

Instead of specifying a spectra genre you’d like to get, you may specify an activities genre you prefer to use to calculate
a corresponding spectrum. The table below summarizes which spectra genres may be calculated from which activities
genres.

Table 3: Spectra and corresponding activities genres
Spectra Default activity Other activities
IR dip iri
VCD rot
UV vosc losc, vdip, ldip
ECD vrot lrot
Raman raman1 ramact, ramanactiv, raman2, raman3
ROA roa1 roa2, roa3

Warning: If you provide two different genres that map to the same spectra genre, only one of them will be
accessible, the other will be thrown away. If you’d like to compare results of simulations using different genres, you
need to store the return value of Tesliper.calculate_spectra() call.

>>> out = tslr.calculate_spectra(["vrot", "lrot"])
>>> list(out.keys()) # only one representation returned
["ecd"]
>>> velo = tslr.calculate_spectra(["vrot"])
>>> length = tslr.calculate_spectra(["lrot"])
>>> assert not velo["ecd"] == length["ecd"] # different

Averaging spectra

Each possible conformer contributes to the compound’s spectrum proportionally to it’s population in the mixture.
tesliper can calculate conformers’ population from their relative energies, using a technique called Boltzmann dis-
tribution. Assuming that any energies genre is available (usually at least scf energies are), after calculating spectra you
want to simulate, you should call Tesliper.average_spectra() to get the final simulated spectra.

>>> averaged = tslr.average_spectra() # averages available spectra
>>> assert tslr.averaged is averaged # just a reference

Tesliper.average_spectra() averages each spectra stored in the Tesliper.spectra dictionary, using each
available energies genre. Generated average spectra are stored in Tesliper.averaged dictionary, using a tuples
of ("spectra_genre", "energies_genre") as keys. average_spectra() returns a reference to this attribute.

Note: There is also a Tesliper.get_averaged_spectrum() method for calculating a single averaged spectrum

3.4. Scripting with tesliper 37

https://en.wikipedia.org/wiki/Boltzmann_distribution
https://en.wikipedia.org/wiki/Boltzmann_distribution

tesliper, Release 0.9.3

using a given spectra genre and energies genre. Value returned by this method is not automatically stored.

Temperature of the system

Boltzmann distribution depends on the temperature of the system, which is assumed to be the room temperature,
expressed as 298.15 Kelvin (25.0∘C). You can change it by setting Tesliper.temperature() attribute to the desired
value. This must be done before calculation of the average spectrum to have an effect.

>>> tslr.temperature
298.15 # default value in Kelvin
>>> averaged = tslr.average_spectra() # averages available spectra
>>> tslr.temperature = 300.0 # in Kelvin
>>> high_avg = tslr.average_spectra()
>>> assert not averaged == high_avg # resulting average is different

Note: Tesliper.temperature() value must be a positive number, absolute zero or lower is not allowed, as it would
cause problems in calculation of Boltzmann distribution. An attempt to set temperature to equal or below 0 K will
raise a ValueError.

3.4.4 Comparing with experiment

The experimental spectrum may be loaded with tesliper from a text or CSV file. The software helps you adjust
the shift and scale of your simulated spectra to match the experiment. Unfortunately, tesliper does not offer broad
possibilities when it comes to mathematical comparison of the simulated spectra and the experimental one. You will
need to use an external library or write your own logic to do that.

Loading experimental spectra

To load an experimental spectrum use Tesliper.load_experimental() method. You will need to provide a path
to the file (absolute or relative to the current Tesliper.input_dir) and a genre name of the loaded experimental
spectrum. When the file is read, its content is stored in Tesliper.experimental dictionary.

>>> spectrum = tslr.load_experimental("path/to/spectrum.xy", "ir")
>>> tslr.experimental["ir"] is spectrum
True

Adjusting calculated spectra

Spectra calculated and loaded from disk with tesliper are stored as instances of Spectra or SingleSpectrum
classes. Both of them provide a scale_to() and shift_to() methods that adjust a scale and offset (respectively)
to match another spectrum, provided as a parameter. Parameters found automatically may not be perfect, so you may
provide them yourself, by manually setting scaling and offset to desired values.

>>> spectra = tslr.spectrum["ir"]
>>> spectra.scaling # affects spectra.y
1.0
>>> spectra.scale_to(tslr.experimental["ir"])

(continues on next page)

38 Chapter 3. References

tesliper, Release 0.9.3

(continued from previous page)

>>> spectra.scaling
1.32
>>> spectra.offset = 50 # bathochromic shift, affects spectra.x

Corrected values may be accessed via spectra.x and spectra.y, original values may be accessed via spectra.
abscissa and spectra.values.

3.4.5 Writing to disk

Once you have data you care about, either extracted or calculated, you most probably would like to store it, process it
with another software, or visualize it. tesliper provides a way to save this data in one of the supported formats: CSV,
human-readable text files, or .xlsx spreadsheet files. Moreover, tesliper may produce Gaussian input files, allowing
you to easily setup a next step of calculations.

Exporting data

tesliper provides a convenient shorthands for exporting certain kinds of data:

• Tesliper.export_energies() will export information about conformers’ energies and their calculated pop-
ulations;

• Tesliper.export_spectral_data() will export data that is related to spectral activity, but cannot be used
to simulate spectra;

• Tesliper.export_activities()will export unprocessed spectral activities, normally used to simulate spec-
tra;

• Tesliper.export_spectra() will export spectra calculated so far that are stored in Tesliper.spectra
dictionary;

• Tesliper.export_averaged() will export each averaged spectrum calculated so far that is stored in
Tesliper.averaged dictionary.

Each of these methods take two parameters: fmt and mode. fmt is a file format, to which data should be exported. It
should be one of the following values: "txt" (the default), "csv", "xlsx". mode denotes how files should be opened
and should be one of: "a" (append to existing file), "x" (the default, only write if file doesn’t exist yet), "w" (overwrite
file if it already exists).

These export methods will usually produce a number of files in the Tesliper.output_dir, which names will
be picked automatically, according to the genre of the exported data and/or the conformer that data relates
to. export_energies() will produce a file for each available energies genre and an additional overview file,
export_spectra() will create a file for spectra genre and each conformer, and so on.

Note: "xlsx" format is an exception from the above - it will produce only one file, named “tesliper-output.xlsx”, and
create multiple spreadsheets inside this file. The appending mode is useful when exporting data to "xlsx" format, as
it allows to write multiple kinds of data (with calls to multiple of these methods) to this single destination .xlsx file.

There is also a Tesliper.export_data() available, which will export only genres you specifically request (plus
“freq” or “wavelen”, if any genre given genre is a spectral data-related). The same applies here in the context of output
format, write mode, and names of produced files.

3.4. Scripting with tesliper 39

tesliper, Release 0.9.3

Tip: If you would like to customize names of the files produced, you will need to directly use one of the writer objects
provided by tesliper. Refer to the writing module documentation for more information.

Creating input files

You can use Tesliper.export_job_file() to prepare input files for the quantum chemical calculations software.
Apart from the typical fmt (only "gjf" is supported by default) and mode parameters, this method also accepts the
geometry_genre and any number of additional keyword parameters, specifying calculations details. geometry_genre
should be a name of the data genre, representing conformers’ geometry, that should be used as input geometry. Addi-
tional keyword parameters are passed to the writer object, relevant to the fmt requested. Keywords supported by the
default "gjf"-format writer are as follows:

route A calculations route: keywords specifying calculations directives for quantum chemical calculations
software.

link0 Dictionary with “link zero” commands, where each key is command’s name and each value is this
command’s parameter.

comment Contents of title section, i.e. a comment about the calculations.

post_spec Anything that should be placed after conformer’s geometry specification. Will be written to
the file as given.

link0 parameter should be explained in more details. It supports standard link zero commands used with Gaussian
software, like Mem, Chk, or NoSave. Full list of these commands may be found in the documentation for GjfWriter.
link0. Any non-parametric link0 command (i.e. Save, NoSave, and ErrorSave), should be given a True value if
it should be included in the link0 section.

Path-like commands, e.g. Chk or RWF, may be parametrized for each conformer. You can put a placeholder inside a
given string path, which will be substituted when writing to file. The most useful placeholders are probably ${conf}
and ${num} that evaluate to conformer’s name and ordinal number respectively. More information about placeholders
may be found in GjfWriter.make_name() documentation.

>>> list(tslr.conformers.kept_keys())
["conf_one", "conf_three"]
>>> tslr.export_job_file(
... geometry_genre="optimized_geom",
... route="# td=(nstates=80)",
... comment="Example of parametrization in .gjf files",
... link0={
... "Mem": "10MW",
... "Chk": "path/to/${conf}.chk",
... "Save": True,
... },
...)
>>> [file.name for file in tslr.output_dir.iterdir()]
["conf_one.gjf", "conf_three.gjf"]

Then contents of “conf_one.gjf” is:

%Mem=10MW
%Chk=path/to/conf_one.gjf
%Save

(continues on next page)

40 Chapter 3. References

tesliper, Release 0.9.3

(continued from previous page)

td=(nstates=80)

Example of parametrization in .gjf files

[geometry specification...]

3.4.6 Saving session for later

If you’d like to come back to the data currently contained within a tesliper instance, you may serialize it using
Tesliper.serialize() method. Provide the method call with a filename parameter, under which filename the ses-
sion should be stored inside the current output_dir. You may also omit it to use the default ".tslr" name. All
data, extracted and calculated, including current kept status of each conformer, is saved and may be loaded later using
Tesliper.load() class method.

curr_dir = tslr.output_dir
tslr.serialize()
loaded = Tesliper.load(curr_dir / ".tslr")
assert loaded.conformers == tslr.conformers
assert loaded.conformers.kept == tslr.conformers.kept
assert loaded.spectra.keys() == tslr.spectra.keys()

3.5 Advanced guide

tesliper handles data extracted from the source files in a form of specialized objects, called data arrays. These
objects are instances of one of the DataArray subclasses (hence sometimes referenced as DataArray-like objects),
described here in a greater detail. DataArray base class defines a basic interface and implements data validation,
while its subclasses provided by tesliper define how certain data genres should be treated and processed.

Note: Under the hood, data arrays, and tesliper in general, use numpy to provide fast numeric operations on data.

This part of documentation also shows how to take more control over the data export. Tesliper autotomizes this
process quite a bit and exposes only a limited set of possibilities provided by the underlying writer classes. It will be
shown here how to use these writer classes directly in your code.

3.5.1 Data array classes

Each DataArray-like object has the following four attributes:

genre name of the data genre that values represent;

filenames sequence of conformers’ identifiers as a numpy.ndarray(dtype=str);

values sequence of values of genre data genre for each conformer in filenames. It is also a numpy.ndarray, but its
dtype depends on the particular data array class;

allow_data_inconsistency a flag that controls the process of data validation. More about data inconsistency will be
said later.

3.5. Advanced guide 41

https://numpy.org

tesliper, Release 0.9.3

Some data arrays may provide more data. For example, any spectral data values wouldn’t be complete without the in-
formation about the band that they corresponds to, so data arrays that handle this kind of data also provide a frequencies
or wavelengths attribute.

Note: Attributes that hold a band information are actually freq and wavelen respectively, frequencies and wavelengths
are convenience aliases.

Creating data arrays

The easiest way to instantiate the data array of desired data genre is to use Conformers.arrayed() factory method.
It transforms it’s stored data into the DataArray-like object associated with a particular data genre, ignoring any
conformer that is not kept or doesn’t provide data for the requested genre. You may force it to ignore any trimming
applied by adding full=True to call parameters (conformers without data for requested genre still will be ignored).
Moreover, any other keyword parameters provided will be forwarded to the class constructor, allowing you to override
any default values.

>>> from tesliper import Conformers
>>> c = Conformers(
... one={"gib":-123.5},
... two={},
... three={"gib": -123.6},
... four={"gib":-123.7}
...)
>>> c.kept = ["one", "three"]
>>> c.arrayed("gib")
Energies(genre='gib', filenames=['one' 'three'], values=[-123.5 -123.6], t=298.15)
>>> c.arrayed("gib", full=True)
Energies(genre='gib', filenames=['one' 'three' 'four'], values=[-123.5 -123.6 -123.7],␣
→˓t=298.15)
>>> c.arrayed("gib", t=1111)
Energies(genre='gib', filenames=['one' 'three'], values=[-123.5 -123.6], t=1111)

You can also instantiate any data array directly, providing data by yourself.

>>> from tesliper import Energies
>>> Energies(
... genre='gib',
... filenames=['one' 'three'],
... values=[-123.5 -123.6]
...)
Energies(genre='gib', filenames=['one' 'three'], values=[-123.5 -123.6], t=298.15)

42 Chapter 3. References

tesliper, Release 0.9.3

Data validation

On instantiation of a data array class, values provided to its constructor are transformed to the numpy.ndarray of the
appropriate type. If this cannot be done due to the incompatibility of type of values elements and data array’s dtype,
an exception is raised. However, tesliper will try to convert given values to the target type, if possible.

>>> from tesliper import IntegerArray
>>> arr = IntegerArray(genre="example", filenames=["one"], values=["1"])
>>> arr
IntegerArray(genre="example", filenames=["one"], values=[1])
>>> type(arr.values)
<class 'numpy.ndarray'>

>>> IntegerArray(genre="example", filenames=["one"], values=["1.0"])
Traceback (most recent call last):
...
ValueError: invalid literal for int() with base 10: '1.0'

>>> IntegerArray(genre="example", filenames=["one"], values=[None])
Traceback (most recent call last):
...
TypeError: int() argument must be a string, a bytes-like object or a number, not
→˓'NoneType

Also values size is checked: its first dimension must be of the same size, as the number of entries in the filenames,
otherwise ValueError is raised.

>>> IntegerArray(genre="example", filenames=["one"], values=[1, 2])
Traceback (most recent call last):
...
ValueError: values and filenames must have the same shape up to 1 dimensions. Arrays of␣
→˓shape (2,) and (1,) were given.

InconsistentDataError exception is raised when values are multidimensional, but provide uneven number of en-
tries for each conformer (values are a jagged array).

>>> IntegerArray(genre="example", filenames=["one", "two"], values=[[1, 2], [3]])
Traceback (most recent call last):
...
InconsistentDataError: IntegerArray of example genre with unequal number of values for␣
→˓conformer requested.

This behavior may be suppressed, if the instance is initiated with allow_data_inconsistency=True keyword pa-
rameter. In such case no exception is raised if numbers of entries doesn’t match, and jagged arrays will be turned into
numpy.ma.masked_array instead of numpy.ndarray, if it is possible.

>>> IntegerArray(
... genre="example",
... filenames=["one"],
... values=[1, 2],
... allow_data_inconsistency=True
...)
IntegerArray(genre="genre", filenames=["one"], values=[1,2], allow_data_
→˓incosistency=True)

(continues on next page)

3.5. Advanced guide 43

tesliper, Release 0.9.3

(continued from previous page)

>>> IntegerArray(
... genre="example",
... filenames=["one", "two"],
... values=[[1, 2], [3]],
... allow_data_inconsistency=True
...)
IntegerArray(genre='genre', filenames=['one' 'two'], values=[[1 2]
[3 --]], allow_data_inconsistency=True)

Some data array classes validate also other data provided to its constructor, e.g. Geometry checks if atoms provides
an atom specification for each atom in the conformer.

Note: Each validated field is actually a ArrayProperty or its subclass under the hood, which provides the validation
mechanism.

Available data arrays

Data arrays provided by tesliper are listed below in categories, along with a short description and with a list of data
genres that are associated with a particular data array class. More information about a DataArray-like class of interest
may be learn in the API reference.

Generic types

Simple data arrays, that hold a data of particular type. They do not provide any functionality beside initial data vali-
dation. They are used by tesliper for segregation of simple data an as a base classes for other data arrays (concerns
mostly FloatArray).

IntegerArray For handling data of int type.

Table 4: Genres associated with this class:
charge multiplicity

FloatArray For handling data of float type.

Table 5: Genres associated with this class:
zpecorr tencorr entcorr gibcorr

BooleanArray For handling data of bool type.

Table 6: Genres associated with this class:
normal_termination optimization_completed

InfoArray For handling data of str type.

Table 7: Genres associated with this class:
command stoichiometry

44 Chapter 3. References

tesliper, Release 0.9.3

Spectral data

Each data array in this category provides a freq or wavelen attribute, also accessible by their convenience aliases fre-
quencies and wavelengths. These attributes store an information about frequency or wavelength that the particular
spectral value is associated with (x-axis value of the center of the band).

Activities genres, that are the genres that may be used to simulate the spectrum, also provide a calculate_spectra()
method for this purpose (see VibrationalActivities.calculate_spectra(), ScatteringActivities.
calculate_spectra(), and ElectronicActivities.calculate_spectra()), as well as a intensities prop-
erty that calculates a theoretical intensity for each activity value. A convince spectra_name property may be used to
get the name of spectra pseudo-genre calculated with particular activities genre.

>>> act = c["dip"]
>>> act.spectra_name
"ir"
>>> from tesliper import lorentzan
>>> spc = act.calculate_spectra(
... start=200, # cm^(-1)
... stop=1800, # cm^(-1)
... step=1, # cm^(-1)
... width=5, # cm^(-1)
... fitting=lorentzan
)
>>> type(spc), spc.genre
(<class 'tesliper.glassware.spectra.Spectra'>, 'ir')

VibrationalData For handling vibrational (IR and VCD related) data that is not a spectral activity.

Table 8: Genres associated with this class:
mass frc emang

ScatteringData For handling scattering (Raman and ROA related) data that is not a spectral activity.

Table 9: Genres associated with this class:
depolarp depolaru depp depu alpha2
beta2 alphag gamma2 delta2 cid1
cid2 cid3 rc180

ElectronicData For handling electronic (UV and ECD related) data that is not a spectral activity.

Table 10: Genres associated with this class:
eemang

VibrationalActivities For handling vibrational (IR and VCD related) spectral activity data.

Table 11: Genres associated with this class:
iri dip rot

ScatteringActivities For handling scattering (Raman and ROA related) spectral activity data.

3.5. Advanced guide 45

tesliper, Release 0.9.3

Table 12: Genres associated with this class:
ramanactiv ramact raman1 roa1
raman2 roa2 raman3 roa3

ElectronicActivities For handling electronic (UV and ECD related) spectral activity data.

Table 13: Genres associated with this class:
vdip ldip vrot lrot vosc losc

Other data arrays

FilenamesArray Special case of DataArray, holds only filenames. values property returns same as filenames and
ignores any value given to its setter. The only genre associated with this class is filenames pseudo-genre.

Bands Special kind of data array for band values, to which spectral data or activities correspond. Provides an easy
way to convert values between their different representations: frequency, wavelength, and excitation energy. Also
allows to easily locate conformers with imaginary frequencies.

>>> arr = Bands(
... genre="freq",
... filenames=["one", "two", "three"],
... values=[[-15, -10, 105], [30, 123, 202], [-100, 12, 165]]
...)
>>> arr.imaginary
array([2, 0, 1])
>>> arr.find_imaginary()
{'one': 2, 'three': 1}

Table 14: Genres associated with this class:
freq wavelen ex_en

Energies For handling data about the energy of conformers. Provides an easy way of calculating Boltzmann
distribution-based population of conformers via a populations property.

>>> arr = Energies(
... genre="gib",
... filenames=["one", "two", "three"],
... values=[-123.505977, -123.505424, -123.506271]
...)
>>> arr.deltas # difference from lowest energy in kcal/mol
array([0.18448779, 0.53150055, 0.])
>>> arr.populations
array([0.34222796, 0.19052561, 0.46724643])

Table 15: Genres associated with this class:
scf zpe ten ent gib

Transitions For handling information about electronic transitions from ground to excited state contributing to each
band.

46 Chapter 3. References

tesliper, Release 0.9.3

Data is stored in three attributes: ground , excited , and values, which are respectively: list of ground state
electronic subshells, list of excited state electronic subshells, and list of coefficients of transitions from corre-
sponding ground to excited subshell. Each of these arrays is of shape (conformers, bands, max_transitions),
where ‘max_transitions’ is a highest number of transitions contributing to single band across all bands of all
conformers.

Allows to easily calculate contribution of each transition using contribution and to find which transition
contributes the most to the particular transition with highest_contribution.

Table 16: Genres associated with this class:
transitions

Geometry For handling information about geometry of conformers.

Table 17: Genres associated with this class:
last_read_geom input_geom optimized_geom

3.5.2 Writing to disk

Tesliper object provides an easy, but not necessarily a flexible way of writing calculated and extracted data to disk.
If your process requires more flexibility in this matter, you may use tesliers writer objects directly. This will allow
you to adjust how generated files are named and will give you more control over what is exported.

Writer classes

A writer object may be created using a writer() factory function. It expects a string parameter, that specifies a
desired format for data export. tesliper provides writers for "txt", "csv", "xlsx", and "gjf" file formats. The
second mandatory parameter is a destination: the (existing) directory to which files should be written. Just like writing
methods of Tesliper object, the function also takes a mode parameter that defines what should happen if any file
already exists. Any additional keyword parameters are forwarded to the writer object constructor.

>>> from tesliper import writer
>>> wrt = writer("txt", "/path/to/dir")
>>> type(wrt)
<class 'tesliper.writing.txt_writer.TxtWriter'>

>>> wrt = writer("txt", "/doesnt/exists")
Traceback (most recent call last):
...
FileNotFoundError: Given destination doesn't exist or is not a directory.

Note: writer() factory function is used by tesliper mostly to provide a dynamic access to the writer class most
recently registered (on class definition) to handle a particular format. This is useful when you modify an existing writer
class or provide a new one.

You can also create any of the writer objects directly, by importing and instantiating its class. The four available writer
classes are listed below with a short comment. For more information on which methods they implement and how to
use them, refer to the relevant API documentation.

3.5. Advanced guide 47

tesliper, Release 0.9.3

from tesiper import TxtWriter
wrt = TxtWriter(destination="/path/to/dir")

TxtWriter Generates human-readable text files.

CsvWriter Generates files in CSV format with optional headers. Allows for the same level of output format cus-
tomization as Python’s csv.writer (supports specification of dialect and other formatting parameters).

XlsxWriter Instead of generating multiple files, creates a single .xlsx file and a variable number of spreadsheets
inside it.

GjfWriter Allows to create input files for new calculation job in Gaussian software.

write() and other methods

Writer objects expect data they receive to be a DataArray-like instances. Each writer object provides a write()
method for writing arbitrary data arrays to disk. This method dispatches received data arrays to appropriate writing
methods, based on their type. You are free to use either write() for easily writing a number of data genres in batch, or
other methods for more control. The table below lists these methods, along with a brief description and DataArray-like
object, for which the method will be called by writer’s write() method.

Table 18: Methods used to write certain data
Writer’s
Method

Description Supported arrays Created
files

generic() Generic data: any genre that provides one
value for each conformer.

DataArray, IntegerArray,
FloatArray, BooleanArray,
InfoArray.

one

overview() General information about conformers: en-
ergies, imaginary frequencies, stoichiome-
try.

Energies one

energies() Detailed information about conformers’
relative energy, including calculated popu-
lations

Energies for each
genre

single_spectrum()A spectrum - calculated for single con-
former or averaged.

SingleSpectrum one

spectral_data()Data related to spectral activity, but not
convertible to spectra.

VibrationalData,
ScatteringData, ElectronicData

for each
con-
former

spectral_activities()Data that may be used to simulate conform-
ers’ spectra.

VibrationalActivities,
ScatteringActivities,
ElectronicActivities

for each
con-
former

spectra() Spectra for multiple conformers. Spectra for each
con-
former

transitions()Electronic transitions from ground to ex-
cited state, contributing to each band.

Transitions for each
con-
former

geometry() Geometry (positions of atoms in space) of
conformers.

Geometry for each
con-
former

spectral_data() and spectral_activities() methods need some clarification. They will create one file for
each conformer in given data arrays, with data from each provided data array joined in the conformer’s file. It’s im-

48 Chapter 3. References

tesliper, Release 0.9.3

portant to remember, that only values from each data array are displayed, contrary to band values, which are displayed
only once, as provided with the band parameter. Consequently, mixing vibrational and scattering data with a custom
name_template is fine, but mixing either of those with electronic data in a single call is not possible.

Warning: You need to make sure that data contained in DataArray-like objects cover the same set of conformers,
when passing multiple data array objects to the write() method or any other writing method. Passing two data
arrays with data for different sets of conformers may produce files with corrupted data or fail silently. Conformers.
trim_incomplete() trimming method may be helpful in preventing such fails.

Not all writer objects implement each of these writing methods, e.g. GjfWriter, that allows to create Gaussian input
files, only implements geometry() method (because export of, e.g. a calculated spectrum as a Gaussian input would
be pointless). Trying to write() a data array that should be written by a method that is not implemented, or calling
such method directly, will raise a NotImplementedError.

Naming files

Usually, calling any of writing methods will produce multiple files in the destination directory: one for each given
genre, each conformer, etc. tesliper provides a reasonable naming scheme for these files, but you can modify it,
by providing your own name_templates in place of the default ones. To do this you will need to call desired writing
methods directly, instead of using write().

Each writing method uses a value of name_template parameter given to the method call to create a filename for each
file it generates. name_template should be a string that contains (zero, one, or more) label identifiers in form of
${identifier}. These identifiers will be substituted to produce a final filename. Available identifiers and their
meaning are as follows:

${ext} - appropriate file extension;
${conf} - name of the conformer;
${num} - number of the file according to internal counter;
${genre} - genre of exported data;
${cat} - category of produced output;
${det} - category-specific detail.

The ${ext} identifier is filled with the value of Writers .extension attribute, which value is also used to identify a
writer class: "txt", "csv", etc. Other values are provided by the particular writing method.

from tesiper import Tesliper, writer
tslr = Tesliper(input_dir="/project/input")
... # data extracted and trimmed
tslr.conformers.kept_keys() == {"conf_one", "conf_four"}
freq, dip, rot = tslr["freq"], tslr["dip"], tslr["rot"]
wrt = writer("txt", "/project/default")
wrt.spectral_activities(band=freq, data=[dip, rot])
wrt = writer("txt", "/project/custom")
wrt.spectral_activities(

band=freq, data=[dip, rot],
name_template="name_${num}_${genre}.xy"

)

3.5. Advanced guide 49

tesliper, Release 0.9.3

Listing 1: contents of /project

.
input

...
default

conf_one.activities-vibrational.txt
conf_four.activities-vibrational.txt

custom
name_1_freq.xy
name_2_freq.xy

3.6 Available data genres

freq list of floats; available from freq job

harmonic vibrational frequencies (cm^-1)

mass list of floats; available from freq job

reduced masses (AMU)

frc list of floats; available from freq job

force constants (mDyne/A)

iri list of floats; available from freq job

IR intensities (KM/mole)

dip list of floats; available from freq=VCD job

dipole strengths (10**-40 esu**2-cm**2)

rot list of floats; available from freq=VCD job

rotational strengths (10**-44 esu**2-cm**2)

emang list of floats; available from freq=VCD job

E-M angle = Angle between electric and magnetic dipole transition moments (deg)

depolarp list of floats; available from freq=Raman job

depolarization ratios for plane incident light

depolaru list of floats; available from freq=Raman job

depolarization ratios for unpolarized incident light

ramanactiv list of floats; available from freq=Raman job

Raman scattering activities (A**4/AMU)

ramact list of floats; available from freq=ROA job

Raman scattering activities (A**4/AMU)

depp list of floats; available from freq=ROA job

depolarization ratios for plane incident light

50 Chapter 3. References

tesliper, Release 0.9.3

depu list of floats; available from freq=ROA job

depolarization ratios for unpolarized incident light

alpha2 list of floats; available from freq=ROA job

Raman invariants Alpha2 = alpha**2 (A**4/AMU)

beta2 list of floats; available from freq=ROA job

Raman invariants Beta2 = beta(alpha)**2 (A**4/AMU)

alphag list of floats; available from freq=ROA job

ROA invariants AlphaG = alphaG’(10**4 A**5/AMU)

gamma2 list of floats; available from freq=ROA job

ROA invariants Gamma2 = beta(G’)**2 (10**4 A**5/AMU)

delta2 list of floats; available from freq=ROA job

ROA invariants Delta2 = beta(A)**2, (10**4 A**5/AMU)

raman1 list of floats; available from freq=ROA job

Far-From-Resonance Raman intensities =ICPu/SCPu(180) (K)

roa1 list of floats; available from freq=ROA job

ROA intensities =ICPu/SCPu(180) (10**4 K)

cid1 list of floats; available from freq=ROA job

CID=(ROA/Raman)*10**4 =ICPu/SCPu(180)

raman2 list of floats; available from freq=ROA job

Far-From-Resonance Raman intensities =ICPd/SCPd(90) (K)

roa2 list of floats; available from freq=ROA job

ROA intensities =ICPd/SCPd(90) (10**4 K)

cid2 list of floats; available from freq=ROA job

CID=(ROA/Raman)*10**4 =ICPd/SCPd(90)

raman3 list of floats; available from freq=ROA job

Far-From-Resonance Raman intensities =DCPI(180) (K)

roa3 list of floats; available from freq=ROA job

ROA intensities =DCPI(180) (10**4 K)

cid3 list of floats; available from freq=ROA job

CID=(ROA/Raman)*10**4 =DCPI(180)

rc180 list of floats; available from freq=ROA job

RC180 = degree of circularity

wavelen list of floats; available from td job

excitation energies (nm)

ex_en list of floats; available from td job

excitation energies (eV)

3.6. Available data genres 51

tesliper, Release 0.9.3

eemang list of floats; available from td job

E-M angle = Angle between electric and magnetic dipole transition moments (deg)

vdip list of floats; available from td job

dipole strengths (velocity)

ldip list of floats; available from td job

dipole strengths (length)

vrot list of floats; available from td job

rotatory strengths (velocity) in cgs (10**-40 erg-esu-cm/Gauss)

lrot list of floats; available from td job

rotatory strengths (length) in cgs (10**-40 erg-esu-cm/Gauss)

vosc list of floats; available from td job

oscillator strengths

losc list of floats; available from td job

oscillator strengths

transitions list of lists of lists of (int, int, float); available from td job

transitions (first to second) and their coefficients (third)

scf float; always available

SCF energy

zpe float; available from freq job

Sum of electronic and zero-point Energies (Hartree/Particle)

ten float; available from freq job

Sum of electronic and thermal Energies (Hartree/Particle)

ent float; available from freq job

Sum of electronic and thermal Enthalpies (Hartree/Particle)

gib float; available from freq job

Sum of electronic and thermal Free Energies (Hartree/Particle)

zpecorr float; available from freq job

Zero-point correction (Hartree/Particle)

tencorr float; available from freq job

Thermal correction to Energy (Hartree/Particle)

entcorr float; available from freq job

Thermal correction to Enthalpy (Hartree/Particle)

gibcorr float; available from freq job

Thermal correction to Gibbs Free Energy (Hartree/Particle)

command str; always available

command used for calculations

52 Chapter 3. References

tesliper, Release 0.9.3

normal_termination bool; always available

true if Gaussian job seem to exit normally, false otherwise

optimization_completed bool; available from opt job

true if structure optimization was performed successfully

version str; always available

version of Gaussian software used

charge int; always available

molecule’s charge

multiplicity int; always available

molecule’s spin multiplicity

input_atoms list of str; always available

input atoms as a list of atoms’ symbols

input_geom list of lists of floats; always available

input geometry as X, Y, Z coordinates of atoms

stoichiometry str; always available

molecule’s stoichiometry

last_read_atoms list of ints; always available

molecule’s atoms as atomic numbers

last_read_geom list of lists of floats; always available

molecule’s geometry (last one found in file) as X, Y, Z coordinates of atoms

optimized_atoms list of ints; available from successful opt job

molecule’s atoms read from optimized geometry as atomic numbers

optimized_geom list of lists of floats; available from successful opt job

optimized geometry as X, Y, Z coordinates of atoms

3.7 Math and Algorithms

3.7.1 Simulation of spectra

To simulate a spectrum, each band’s theoretical signal intensity, derived from quantum chemical calculations of corre-
sponding optical activity, must be expressed as a broadened peak, instead of the single scalar value. To simulate peak’s
shape one of the curve fitting functions is used. tesliper implements two, most commonly used, such functions:
gaussian function1 and lorentzian function2.

For each point on the simulated spectrum’s abscissa, the corresponding signal intensity is calculated by applying the
fitting function to all bands of the conformer and summing resulting values.

1 https://mathworld.wolfram.com/GaussianFunction.html
2 https://mathworld.wolfram.com/LorentzianFunction.html

3.7. Math and Algorithms 53

https://mathworld.wolfram.com/GaussianFunction.html
https://mathworld.wolfram.com/LorentzianFunction.html

tesliper, Release 0.9.3

Gaussian fitting function

𝑓(𝜈) =
1

𝜎
√

2𝜋

∑︁
𝑖

𝐼𝑖𝑒
−(𝜈𝑖−𝜈)2/(2𝜎2)

𝜈 Arbitrary point on the 𝑥-axis, for which the signal intensity is calculated.

𝜈𝑖 Point on the 𝑥-axis, at which the 𝑖th band occur.

𝐼𝑖 Intensity of the 𝑖th band.

𝜎 =
√

2𝜔 Standard derivation, in this context interpreted as equal to
√

2 times 𝜔.

𝜔 Half width of the peak at 1
𝑒 of its maximum value (HW1OeM), expressed in the 𝑥-axis units.

Lorentzian fitting function

𝑓(𝜈) =
𝛾

𝜋

∑︁
𝑖

𝐼𝑖
(𝜈𝑖 − 𝜈)2 + 𝛾2

𝜈 Arbitrary point on the 𝑥-axis, for which the signal intensity is calculated.

𝜈𝑖 Point on the 𝑥-axis, at which the 𝑖th band occur.

𝐼𝑖 Intensity of the 𝑖th band.

𝛾 Half width of the peak at half of its maximum value (HWHM), expressed in the 𝑥-axis units.

3.7.2 Calculation of intensities

Dipole strength and rotator strength is converted to the theoretical intensity as described by Polavarapu3. Constants
used in below equations are as follows.

𝑐 = 2.99792458 × 1010 cm · s−1 Speed of light.

ℎ = 6.62606896 × 10−30 kg · cm2 · s−1 Planck’s constant.

𝑁𝐴 = 6.02214199 × 1023 mol−1 Avogadro’s constant.

𝑚𝑒 = 9.10938 × 10−28 g Mass of the electron.

𝑒 = 4.803204 × 10−10 esu The charge on the electron.

Dipole strength to IR intensities

𝐼𝑘 =
100 · 8𝜋3𝑁𝐴

3 · ln(10) · ℎ𝑐
𝐷𝑘𝜈𝑘 = 0.010886 ·𝐷𝑘𝜈𝑘

𝐷𝑘 [×10−40 esu2cm2] Dipole strength of 𝑘th transition.

𝜈𝑘 [cm−1] Frequency of the 𝑘th transition.

𝐼𝑘 [L mol−1cm−1] Theoretical (“zero-width”) peak intensity in terms of the decadic molar absorption coefficient 𝜖.
3 Prasad L. Polavarapu (2017), Chiroptical Spectroscopy Fundamentals and Applications, CRC Press

54 Chapter 3. References

tesliper, Release 0.9.3

Rotator strength to VCD intensities

𝐼𝑘 = 4 · 8𝜋3𝑁𝐴

3 · ln(10) · ℎ𝑐
𝑅𝑘𝜈𝑘 = 0.0435441 ·𝑅𝑘𝜈𝑘

𝑅𝑘 [×10−44 esu2cm2] Rotator strength of 𝑘th transition.

𝜈𝑘 [cm−1] Frequency of the 𝑘th transition.

𝐼𝑘 [L mol−1cm−1] Theoretical (“zero-width”) peak intensity in terms of the decadic molar absorption coefficient 𝜖.

Dipole strength to UV intensities

𝐼𝑘 =
8𝜋3𝑁𝐴

3 · ln(10) · ℎ𝑐
𝐷𝑘𝜆𝑘 = 0.010886 ·𝐷𝑘𝜆𝑘

𝐷𝑘 [×10−40 esu2cm2] Dipole strength of 𝑘th transition.

𝜆𝑘 [cm−1] Wavelength of the 𝑘th transition.

𝐼𝑘 [L mol−1cm−1] Theoretical (“zero-width”) peak intensity in terms of the decadic molar absorption coefficient 𝜖.

Rotator strength to ECD intensities

𝐼𝑘 = 4 · 8𝜋3𝑁𝐴

3 · ln(10) · ℎ𝑐
𝑅𝑘𝜆𝑘 = 0.0435441 ·𝑅𝑘𝜆𝑘

𝑅𝑘 [×10−44 esu2cm2] Rotator strength of 𝑘th transition.

𝜆𝑘 [cm−1] Wavelength of the 𝑘th transition.

𝐼𝑘 [L mol−1cm−1] Theoretical (“zero-width”) peak intensity in terms of the decadic molar absorption coefficient 𝜖.

Oscillator strength to UV intensities

Conversion from oscillator strength to signal intensity of UV spectrum is calculated as described by Gaussian4.

𝐼𝑘 =
𝑒2𝑁𝐴

103 ln(10)𝑚𝑒𝑐2
𝑓𝑘 = 2.315351857 × 108𝑓𝑘

𝑓𝑘 Oscillator strength of 𝑘th transition.

𝐼𝑘 [L mol−1cm−1] Theoretical (“zero-width”) peak intensity in terms of the decadic molar absorption coefficient 𝜖.

Raman/ROA intensities

Gaussian-provided Raman and ROA activities are used without any conversion.
4 https://gaussian.com/uvvisplot/

3.7. Math and Algorithms 55

https://gaussian.com/uvvisplot/

tesliper, Release 0.9.3

3.7.3 Population of conformers

Population of conformers is calculated according to the Boltzmann probability distribution that “gives the probability
that a system will be in a certain state as a function of that state’s energy and the temperature of the system.”5 In this
context each conformer is considered one of the possible states of the system (a studied molecule).

Firstly, we calculate a Boltzmann factors for each conformer in respect to the most stable conformer (the one of the
lowest energy). Boltzmann factor of two states is defined as:

𝐵𝑎
𝑏 =

𝐹 (𝑠𝑡𝑎𝑡𝑒𝑎)

𝐹 (𝑠𝑡𝑎𝑡𝑒𝑏)
= 𝑒(𝐸𝑏−𝐸𝑎)/𝑘𝑡

where:

𝐸𝑎 and 𝐸𝑏 energies of states 𝑎 and 𝑏;

𝑘 = 0.0019872041 kcal/(mol * K) Boltzmann constant;

𝑡 temperature of the system.

Boltzmann factor represents a ratio of probabilities of the two states being occupied. In other words, it shows how much
more likely it is for the molecule to take the form of one conformer over another conformer. Having a ratio of these
probabilities for each possible conformer in respect to the most stable conformer, we are able to find the distribution of
conformers (probability of taking the form of each conformer):

𝑝𝑖 =
𝐵𝑖

0
𝑠𝑡𝑎𝑡𝑒𝑠∑︀

𝑗

𝐵𝑗
0

assuming that 𝑠𝑡𝑎𝑡𝑒0 is the state of the lowest energy (the most stable conformer).

3.7.4 RMSD of conformers

RMSD, or root-mean-square deviation of atomic positions, is used as a measure of similarity between two conformers.
As its name hints, it is an average distance between atoms in the two studied conformers: the lower the RMSD value,
the more similar are conformers in question.

Finding minimized value of RMSD

In a typical output of the quantum chemical calculations software, molecule is represented by a number of points
(mapping to particular atoms) in a 3-dimensional space. Usually, orientation and position of the molecule in the
coordinate system is arbitrary and simple overlay of the two conformers may not be the same as their optimal overlap.
To neglect the effect of conformers’ rotation and shift on the similarity measure, we will look for the common reference
frame and optimal alignment of atoms.

Zero-centring atomic coordinates

To find the common reference frame for two conformers we move both to the origin of the coordinate system. This is
done by calculating a centroid of a conformer and subtracting it from each point representing an atom. The centroid is
given as an arithmetic mean of all the atoms in the conformer:

𝑎0𝑖 = 𝑎𝑖 −
1

𝑛

𝑛∑︁
𝑗=𝑎

𝑎𝑗

where:
5 https://en.wikipedia.org/wiki/Boltzmann_distribution

56 Chapter 3. References

https://en.wikipedia.org/wiki/Boltzmann_distribution

tesliper, Release 0.9.3

𝑎𝑖, 𝑎𝑗 atom’s original position in the coordinate system;

𝑎0𝑖 atom’s centered position in the coordinate system;

𝑛 number of atoms in the molecule.

Rotating with Kabsch algorithm

Optimal rotation of one conformer onto another is achieved using a Kabsch algorithm6 (also known as Wahba’s prob-
lem7). Interpreting positions of each conformers’ atoms as a matrix, we find the covariance matrix 𝐻 of these matrices
(𝑃 and 𝑄):

𝐻 = 𝑃 ᵀ𝑄

and then we use the singular value decomposition (SVD)8 routine to get 𝑈 and 𝑉 unitary matrices.

𝐻 = 𝑈Σ𝑉 ᵀ

Having these, we can calculate the optimal rotation matrix as:

𝑅 = 𝑉

⎛⎝1 0 0
0 1 0
0 0 𝑑

⎞⎠𝑈ᵀ

where 𝑑 = sign(det(𝑉 𝑈ᵀ)) that allows to ensure a right-handed coordinate system.

Note: To allow for calculation of th best rotation between sets of molecules and to compromise between efficiency and
simplicity of implementation, tesliper uses Einstein summation convention9 via numpy.einsum() function. The
implementation is as follows:

def kabsch_rotate(a: MoleculeOrList, b: MoleculeOrList) -> np.ndarray:
"""Minimize RMSD of conformers *a* and *b* by rotating molecule *a* onto *b*.
Expects given representation of conformers to be zero-centered.
Both *a* and *b* may be a single molecule or a set of conformers.

Parameters

a : [Sequence of]Sequence of Sequence of float

Set of points representing atoms, that will be rotated to best match reference.
b : [Sequence of]Sequence of Sequence of float

Set of points representing atoms of the reference molecule.
"""
this approach is probably not the most efficient
but lets us easily perform a matrix multiplication on stacks of matrices
a, b = np.asanyarray(a), np.asanyarray(b)
calculate covariance matrix for each stacked set of points
for each of stacked sets of points, equivalent of:
>>> cov = a.T @ b
cov = np.einsum("...ji,...jk", a, b)
u, s, vh = np.linalg.svd(cov) # singular value decomposition

(continues on next page)

6 https://en.wikipedia.org/wiki/Kabsch_algorithm
7 https://en.wikipedia.org/wiki/Wahba%27s_problem
8 https://en.wikipedia.org/wiki/Singular_value_decomposition
9 https://en.wikipedia.org/wiki/Einstein_notation

3.7. Math and Algorithms 57

https://en.wikipedia.org/wiki/Kabsch_algorithm
https://en.wikipedia.org/wiki/Wahba%27s_problem
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Einstein_notation

tesliper, Release 0.9.3

(continued from previous page)

if determinant is negative, swap to ensure right-handed coordinate system
det = np.linalg.det(vh @ u) # works with stacked matrices
don't introduce new dimension if not necessary
shape = (det.size, 3, 3) if det.size > 1 else (3, 3)
swap = np.zeros(shape)
swap[..., np.arange(2), np.arange(2)] = 1
swap[..., -1, -1] = np.sign(det)
calculate optimally rotated set/s of points `a`
for each of stacked sets of points, equivalent of
>>> rotated = a @ u @ swap @ vh
where u @ swap @ vh is rotation matrix
return np.einsum("...ij,...jk,...kl,...lm", a, u, swap, vh)

Calculating RMSD of atomic positions

Once conformers are aligned, the value of RMSD10 is calculated simply by finding a distance between each equivalent
atoms and averaging their squares and finding the root of this average:

RMSD =

⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖

(𝑝𝑖 − 𝑞𝑖)2

where:

𝑝𝑖 and 𝑞𝑖 positions of 𝑖th equivalent atoms in conformers 𝑃 and 𝑄;

𝑛 number of atoms in each conformer.

Comparing conformers

To compare conformers as efficiently as possible, the RMSD values are calculated not in the each-to-each scheme, but
inside a rather small moving window. The size of this window determines how many calculations will be done for the
whole collection.

Moving window mechanism

tesliper provides three types of moving windows: a fixed , stretching, and pyramid windows. The strategy you
choose will affect both the performance and the accuracy of the RMSD sieve, as described below.

fixed The most basic sliding window of a fixed size. Provides the most control over the performance of the sieve,
but is the least accurate.

stretching The default, allows to specify the size of the window in the context of some numeric property, usually
the energy of conformers. The size may differ in the sense of the number of conformers in each window, but the
difference between maximum and minimum values of said property inside a window will not be bigger than the
given size. Provides a best compromise between the performance and the accuracy.

pyramid The first window will contain the whole collection and each consecutive window will be smaller by one
conformer. Allows to perform a each-to-each comparison, but in logarithmic time rather than quadratic time.
Best accuracy but worst performance.

10 https://en.wikipedia.org/wiki/Root-mean-square_deviation_of_atomic_positions

58 Chapter 3. References

https://en.wikipedia.org/wiki/Root-mean-square_deviation_of_atomic_positions

tesliper, Release 0.9.3

Note: The actual windows produced by sliding window functions are iterables of numpy.ndarrays of indices (that
point to the value in the original array of conformers).

The sieve

The RMSD sieve function takes care of zero-centring and finding the best overlap of the conformers, as described
previously. Aside form this, it works as follows: for each window, provided by one of the moving window functions
described above, it takes the first conformer in the window (reference) and calculates it’s minimum RMSD value with
respect to each of the other conformers in this window. Any conformers that have lower RMSD value than a given
threshold, will be considered identical to the reference conformer and internally marked as not kept. The sieve returns
an array of boolean value for each conformer: True if conformer’s structure is “original” and should be kept, False if
it is a duplicate of other, “original” structure (at least according to threshold given), and should be discarded.

3.7.5 Spectra transformation

Finding best shift

Optimal offset of two spectra is determined by calculating their cross-correlation11 (understood as in the signal process-
ing context) and finding its maximum value. Index of this max value of the discrete cross-correlation array indicates
the position of one spectrum in respect to the other spectrum, in which the overlap of the two is the greatest.

Finding optimal scaling

Optimal scaling factor of spectra is determined by comparing a mean y values of target spectrum and a reference
spectrum. Values lower than 1% of maximum absolute y value of each spectrum are ignored.

3.8 tesliper

Modules

tesliper.datawork All core algorithms for data handling live here, along
with some helpers.

tesliper.exceptions Project-specific errors.
tesliper.extraction Classes for reading and parsing files.
tesliper.glassware Data containers.
tesliper.tesliper Provides a facade-like interface for easy access to

tesliper's functionality.
tesliper.writing Objects for data serialization.

11 https://en.wikipedia.org/wiki/Cross-correlation

3.8. tesliper 59

https://en.wikipedia.org/wiki/Cross-correlation

tesliper, Release 0.9.3

3.8.1 tesliper.datawork

All core algorithms for data handling live here, along with some helpers.

This package implements functions used by tesliper to provide its core functionality: comparing conformers, cal-
culating spectra, averaging them, etc. It is divided into few modules based on a field that given function is related
to.

Modules

tesliper.datawork.atoms Converters between string and integer representations of
atoms.

tesliper.datawork.energies Functions for calculating populations of conformers
based on their relative energies using Boltzmann distri-
bution.

tesliper.datawork.geometry Conformers geometry-related functions, primarily an
RMSD sieve implementation.

tesliper.datawork.intensities Optical activity to signal intensity converters.
tesliper.datawork.spectra Functions that deal with spectra and spectral data.

tesliper.datawork.atoms

Converters between string and integer representations of atoms.

Functions

atomic_number(element) Returns atomic number of given element.
symbol_of_element(element) Returns symbol of given element.
validate_atoms(atoms) Checks if given atoms represent a list of valid atom iden-

tifiers (symbols or atomic numbers).

Classes

Atom(value) An enumeration that maps symbols of atoms to respec-
tive atomic numbers.

class tesliper.datawork.atoms.Atom(value)
An enumeration that maps symbols of atoms to respective atomic numbers.

This enumeration is introduced for your convenience: whenever you need to reference an atom by its atomic
number, you may use appropriate symbol-value of this Enum instead. Providing e.g. Atom.Au rather than an
integer 79 for Au’s atomic number is probably a bit easier and definitely more readable.

tesliper.datawork.atoms.symbol_of_element(element: Union[int, str])→ str
Returns symbol of given element. If element is a symbol of an element already, it is capitalized and returned (so
input’s letters case doesn’t matter).

Parameters element (int or str) – element’s atomic number

Returns symbol of an element

60 Chapter 3. References

tesliper, Release 0.9.3

Return type str

Raises

• ValueError – when element is not a whole number or cannot be converted to integer

• TypeError – if element cannot be interpreted as integer

• InvalidElementError – if element is not an atomic number of any known element

tesliper.datawork.atoms.atomic_number(element: Union[int, str])→ int
Returns atomic number of given element. If element is an atomic number already, it is returned without change.

Parameters element (str or int) – element’s symbol or atomic number (letters case doesn’t
matter if string is given)

Returns atomic number of an element

Return type int

Raises

• InvalidElementError – when element cannot be converted to element’s atomic number

• TypeError – if element cannot be interpreted as integer or string

tesliper.datawork.atoms.validate_atoms(atoms: Union[int, str, List[Union[str, int]]])→ List[int]
Checks if given atoms represent a list of valid atom identifiers (symbols or atomic numbers). Returns list of
atomic numbers of those atoms if it does or rises an exception if it doesn’t.

Parameters atoms (int, str or iterable of int or str) – Atoms to validate. Atoms as
space-separated string are also accepted.

Returns List of given atoms’ atomic numbers.

Return type list of int

Raises InvalidElementError – if atoms cannot be interpreted as list of atoms’ identifiers

tesliper.datawork.energies

Functions for calculating populations of conformers based on their relative energies using Boltzmann distribution.

Module Attributes

BOLTZMANN Value of Boltzmann constant in kcal/(mol*K).
HARTREE_TO_KCAL_PER_MOL Multiply by this factor to convert from Hartree/mol to

kcal/mol.

3.8. tesliper 61

tesliper, Release 0.9.3

Functions

calculate_deltas(energies) Calculates energy difference between each conformer
and lowest energy conformer.

calculate_min_factors(energies[, t]) Calculates list of conformers' Boltzmann factors respec-
tive to lowest

calculate_populations(energies[, t]) Calculates Boltzmann distribution of conformers of
given energies.

tesliper.datawork.energies.BOLTZMANN = 0.0019872041

Value of Boltzmann constant in kcal/(mol*K).

tesliper.datawork.energies.HARTREE_TO_KCAL_PER_MOL = 627.5095

Multiply by this factor to convert from Hartree/mol to kcal/mol.

tesliper.datawork.energies.calculate_deltas(energies)
Calculates energy difference between each conformer and lowest energy conformer.

Parameters energies (numpy.ndarray or iterable of float) – List of conformers ener-
gies.

Returns List of energy differences from lowest energy.

Return type numpy.ndarray

tesliper.datawork.energies.calculate_min_factors(energies, t=298.15)

Calculates list of conformers’ Boltzmann factors respective to lowest energy conformer in system of given
temperature.

Boltzmann factor of two states is defined as:

rac{F(state_1)}{F(state_2)} = e^{(E_2 - E_1)/kt}

where 𝐸1 and 𝐸2 are energies of states 1 and 2, 𝑘 is Boltzmann constant, 𝑘 =
0.0019872041𝑘𝑐𝑎𝑙/(𝑚𝑜𝑙 *𝐾), and 𝑡 is temperature of the system.

energies [numpy.ndarray or iterable] List of conformers energies in kcal/mol units.

t [float, optional] Temperature of the system in K, defaults to 298,15 K.

numpy.ndarary List of conformers’ Boltzmann factors respective to lowest energy conformer.

tesliper.datawork.energies.calculate_populations(energies, t=298.15)
Calculates Boltzmann distribution of conformers of given energies.

Parameters

• energies (numpy.ndarray or iterable) – List of conformers energies in kcal/mol
units.

• t (float, optional) – Temperature of the system in K, defaults to 298,15 K.

Returns List of conformers populations calculated as Boltzmann distribution.

Return type numpy.ndarary

62 Chapter 3. References

tesliper, Release 0.9.3

tesliper.datawork.geometry

Conformers geometry-related functions, primarily an RMSD sieve implementation.

This module provides an implementation of RMSD sieve, allowing for easy mathematical comparision of conformers’
geometry and filtering out similar ones, based on user-provided “threshold of similarity”.

Functions

calc_rmsd(a, b) Compute RMSD (round-mean-square deviation) of two
conformers (or sets of them).

center(a) Zero-center all given conformers by subtracting their
centroids.

drop_atoms(values, atoms, discarded) Filters given values, returning those corresponding to
atoms not specified as discarded.

find_atoms(atoms, find[, reverse]) Get indices of wanted atoms.
fixed_windows(series, size) Simple, vectorized implementation of basic sliding win-

dow.
get_triangular(m) Find mth triangular number.
get_triangular_base(n) Find which mth triangular number n is.
is_triangular(n) Checks if number n is triangular.
kabsch_rotate(a, b) Minimize RMSD of conformers a and b by rotating

molecule a onto b.
pyramid_windows(series) Produces windows of shrinking sizes, from full sequence

to last element only.
rmsd_sieve(geometry, windows[, threshold]) Compare conformers' geometry to keep only those that

differ at least by a given threshold.
select_atoms(values, indices) Filter given values to contain values only corresponding

to atoms on given indices.
stretching_windows(values, size[, ...]) Implements a sliding window of a variable size, where

values in each window are at most size bigger than the
lowest value in given window.

take_atoms(values, atoms, wanted) Filters given values, returning those corresponding to
atoms specified as wanted.

tesliper.datawork.geometry.find_atoms(atoms: Union[Sequence[int], numpy.ndarray], find: Union[int,
Iterable[int], numpy.ndarray], reverse: bool = False)→
numpy.ndarray

Get indices of wanted atoms.

Parameters

• atoms (Sequence of int or numpy.ndarray) – List of atoms represented by their
atomic numbers.

• find (int, Sequence of int, or numpy.ndarray) – Element or list of elements, rep-
resented by their atomic numbers, which indices should be find in atoms array.

• reverse (bool) – If True, indices of atoms NOT specified in find will be returned.

Returns Indices of found elements.

Return type numpy.ndarray

3.8. tesliper 63

tesliper, Release 0.9.3

tesliper.datawork.geometry.select_atoms(values: Union[Sequence, numpy.ndarray], indices:
Union[Sequence[int], numpy.ndarray])→ numpy.ndarray

Filter given values to contain values only corresponding to atoms on given indices. Recognizes if given values
are a list of values for one or for many conformers, but it must be in shape (A, N) or (C, A, N) respectively.

tesliper.datawork.geometry.take_atoms(values: Union[Sequence, numpy.ndarray], atoms:
Union[Sequence[int], numpy.ndarray], wanted: Union[int,
Iterable[int], numpy.ndarray])→ numpy.ndarray

Filters given values, returning those corresponding to atoms specified as wanted. Roughly equivalent to: >>>
numpy.take(values, numpy.nonzero(numpy.equal(atoms, wanted))[0], 1) but returns empty array, if no atom in
atoms matches wanted atom. If wanted is list of elements, numpy.isin is used instead of numpy.equal.

Parameters

• values (Sequence or numpy.ndarray) – array of values; it should be one-dimensional
list of values or n-dimensional array of shape (conformers, values[, coordinates[, other]])

• atoms (Sequence of int or numpy.ndarray) – list of atoms in molecule, given as
atomic numbers; order should be the same as corresponding values for each conformer

• wanted (int or Iterable of int or numpy.ndarray) – atomic number of wanted
atom, or a list of those

Returns values trimmed to corresponding to desired atoms only; preserves original dimension infor-
mation

Return type numpy.ndarray

tesliper.datawork.geometry.drop_atoms(values: Union[Sequence, numpy.ndarray], atoms:
Union[Iterable[int], numpy.ndarray], discarded: Union[int,
Iterable[int], numpy.ndarray])→ numpy.ndarray

Filters given values, returning those corresponding to atoms not specified as discarded. Roughly equivalent to:
>>> numpy.take(values, numpy.nonzero(~numpy.equal(atoms, discarded))[0], 1) If wanted is list of elements,
numpy.isin is used instead of numpy.equal.

Parameters

• values (Sequence or numpy.ndarray) – array of values; it should be one-dimensional
list of values or n-dimensional array of shape (conformers, values[, coordinates[, other]])

• atoms (Iterable of int or numpy.ndarray) – list of atoms in molecule, given as
atomic numbers; order should be the same as corresponding values for each conformer

• discarded (int or Iterable of int or numpy.ndarray) – atomic number of dis-
carded atom, or a list of those

Returns values trimmed to corresponding to desired atoms only; preserves original dimension infor-
mation

Return type numpy.ndarray

tesliper.datawork.geometry.is_triangular(n: int)→ bool
Checks if number n is triangular.

64 Chapter 3. References

tesliper, Release 0.9.3

Notes

If n is the mth triangular number, then n = m*(m+1)/2. Solving for m using the quadratic formula: m = (sqrt(8n+1)
- 1) / 2, so n is triangular if and only if 8n+1 is a perfect square.

Parameters n (int) – number to check

Returns True if number n is triangular, else False

Return type bool

tesliper.datawork.geometry.get_triangular_base(n: int)→ int
Find which mth triangular number n is.

tesliper.datawork.geometry.get_triangular(m: int)→ int
Find mth triangular number.

tesliper.datawork.geometry.center(a: Union[Sequence[Sequence[float]],
Sequence[Sequence[Sequence[float]]]])→
Union[Sequence[Sequence[float]],
Sequence[Sequence[Sequence[float]]]]

Zero-center all given conformers by subtracting their centroids. Accepts single molecule or list of conformers.

tesliper.datawork.geometry.kabsch_rotate(a: Union[Sequence[Sequence[float]],
Sequence[Sequence[Sequence[float]]]], b:
Union[Sequence[Sequence[float]],
Sequence[Sequence[Sequence[float]]]])→ numpy.ndarray

Minimize RMSD of conformers a and b by rotating molecule a onto b. Expects given representation of con-
formers to be zero-centered. Both a and b may be a single molecule or a set of conformers.

Parameters

• a ([Sequence of]Sequence of Sequence of float) – Set of points representing
atoms, that will be rotated to best match reference.

• b ([Sequence of]Sequence of Sequence of float) – Set of points representing
atoms of the reference molecule.

Returns Rotated set of points a.

Return type numpy.ndarray

Notes

Uses Kabsch algorithm, also known as Wahba’s problem. See: https://en.wikipedia.org/wiki/Kabsch_algorithm
and https://en.wikipedia.org/wiki/Wahba%27s_problem

tesliper.datawork.geometry.calc_rmsd(a: Union[Sequence[Sequence[float]],
Sequence[Sequence[Sequence[float]]]], b:
Union[Sequence[Sequence[float]],
Sequence[Sequence[Sequence[float]]]])→ numpy.ndarray

Compute RMSD (round-mean-square deviation) of two conformers (or sets of them).

Parameters

• a ([Sequence of]Sequence of Sequence of float) – Set of points representing
atoms or list thereof.

• b ([Sequence of]Sequence of Sequence of float) – Set of points representing
atoms or list thereof.

3.8. tesliper 65

https://en.wikipedia.org/wiki/Kabsch_algorithm
https://en.wikipedia.org/wiki/Wahba%27s_problem

tesliper, Release 0.9.3

Returns Value of RMSD of two conformers or list of values, if list of conformers given.

Return type float or numpy.ndarray

Notes

https://en.wikipedia.org/wiki/Root-mean-square_deviation_of_atomic_positions

tesliper.datawork.geometry.fixed_windows(series: Sequence, size: int)→ numpy.ndarray
Simple, vectorized implementation of basic sliding window. Produces a list of windows of given size from given
series.

Parameters

• series (sequence) – Series of data, of which sliding window view is requested.

• size (int) – Number of data points in the window. Must be a positive integer.

Returns List of indices, corresponding to values in the original array, that form a window

Return type numpy.ndarray

Raises

• ValueError – if non-positive integer given as window size

• TypeError – if non-integer value given as window size

Notes

Implementation inspired by https://towardsdatascience.com/fast-and-robust-sliding-window-vectorization-with-numpy-3ad950ed62f5

tesliper.datawork.geometry.stretching_windows(values: Sequence[float], size: Union[int, float],
keep_hermits: bool = False, hard_bound: bool = False)
→ Iterator[numpy.ndarray]

Implements a sliding window of a variable size, where values in each window are at most size bigger than the
lowest value in given window. Values yielded are np.ndarrays of indices of sorted values, that constitute each
window.

When window reaches a border, that is an end of the values array or a gap between values that is larger than given
size, it is “squeezed”, when pressed against the border, producing subsequences of the first view that touches a
border. This is usefull, when one wants to form a window for each value in the original array.

>>> list(stretching_windows([1, 2, 3, 4, 7, 8], 3))
[[0, 1, 2], [1, 2, 3], [2, 3], [4, 5]]

This “soft” right bound may be “hardened” by passing hard_bound=True as a parameter to a function call. A
window will than move immediately to the border’s other side.

>>> list(stretching_windows([1, 2, 3, 4, 7, 8], 3), hard_bound=True)
[[0, 1, 2], [1, 2, 3], [4, 5]]

Windows of size 1, called hermits, are by default ignored.

>>> arr = [1, 2, 10, 20, 22]
>>> list(stretching_windows(arr, 5))
[[0, 1], [3, 4]]

66 Chapter 3. References

https://en.wikipedia.org/wiki/Root-mean-square_deviation_of_atomic_positions
https://towardsdatascience.com/fast-and-robust-sliding-window-vectorization-with-numpy-3ad950ed62f5

tesliper, Release 0.9.3

If such behavior is not desired, it may be turned off with keep_hermits = True. One must remember that,
when a bound is “soft”, the last window is always a hermit.

>>> list(stretching_windows(arr, 5, keep_hermits=True))
[[0, 1], [1], [2], [3, 4], [4]]
>>> list(stretching_windows(arr, 5, keep_hermits=True, hard_bound=True))
[[0, 1], [2], [3, 4]]

Parameters

• values (Sequence of float) – List of values, on which sliding window view is requested.

• size (int or float) – Maximum difference of smallest and largest values inside each
window.

• keep_hermits (bool) – If windows of size one should be yielded (True) or omitted (False).
False by default.

• hard_bound (bool) – How window should behave close to borders. With hard bound (True)
it will move to the other side of border as soon, as it is reached. With soft bound (False) it
will “squeeze” when pressed against the border, producing subsequences of the first view
that includes border value. False by default.

Yields np.array of int – List of indices, corresponding to sorted values in the original array, that form
a window.

Raises ValueError – If given size is not a positive number.

tesliper.datawork.geometry.pyramid_windows(series: Sequence)→ Iterator[numpy.ndarray]
Produces windows of shrinking sizes, from full sequence to last element only.

This function yields numpy.ndarrays with indices that may be used to index an original sequence (assuming
original sequence is numpy.ndarray as well). The first window yielded represents a whole series sequence and
each consecutive window is reduced by the first element, leaving only the last element in the final window. This
allows for easy setup of efficient calculations in symmetric each-to-each relationship.

>>> series = [3, 6, 3, 5, 7]
>>> for window in pyramid_windows(series):
... print(window)
[0 1 2 3 4]
[1 2 3 4]
[2 3 4]
[3 4]
[4]

Parameters series (sequence) – Sequence of elements, for which windows should be generated.

Yields np.ndarray(dtype=int) – Windows as np.ndarray of indices.

tesliper.datawork.geometry.rmsd_sieve(geometry: Sequence[Sequence[Sequence[float]]], windows:
Iterable[Sequence[int]], threshold: float = 1)→ numpy.ndarray

Compare conformers’ geometry to keep only those that differ at least by a given threshold.

This function calculates how similar conformers are one to another, using a RMSD measure, that is is a root-
mean-square deviation of atomic positions, and signalizes which of the conformers are duplicates, according
to a given similarity threshold. Returned array of booleans may be treated as “originality” indicators for each

3.8. tesliper 67

tesliper, Release 0.9.3

conformer: True means given conformer has distinct structure, False means given conformer is similar to some
other conformer marked as “original”.

The measure of conformers’ similarity, the threshold parameter, is a minimum value of RMSD needed to consider
two conformers different. In other words, if two conformers give a RMSD value that is lower then threshold, one
of them will be marked as similar, producing a False in the output array.

To lower a computational expense, similarity measurement is performed in “chunks”, using a sliding window
technique. Windows consist of a portion of conformers from the original data, or more precisely, indices of
conformers that should be included in the particular window. First item from the window is compared to all the
others that are in the same window, and if any of them is similar to the reference item, it is marked as duplicate
(not “original”). The process is repeated for each window.

The windows itself should be provided by user as windows parameter. This provides a flexibility in the process:
you may choose to sacrifice accuracy to lower necessary computational time or vice versa. You may also choose
a different moving window strategy or reject it alltogether, and calculate one-to-each similarity in the whole set.
Iterables of windows accepted by this function may be generated with one of the dedicated moving window fun-
cions: stretching_windows(), fixed_windows(), or pyramid_windows(). Refer to their documentation
for more information.

Parameters

• geometry (sequence of sequence of sequence of float) – A list of conformers,
where each conformer is represented by a sequence of coordinates in 3-dimensional space.
It is assumed that order of atoms in each conformers’ representation is identical.

• windows (iterable of sequence of int) – An iterable of windows, where each win-
dow is a list of indices. Comparision of RMSD values will be performed inside each window.

• threshold (float) – Minimum RMSD value to consider two compared conformers differ-
ent.

Returns Array of booleans for each conformer: True if conformer’s structure is “original” and
should be kept, False if it is a duplicate of other, “original” structure (at least according to
threshold given), and should be discarded.

Return type np.ndarray(dtype=bool)

tesliper.datawork.intensities

Optical activity to signal intensity converters.

Functions

dip_to_ir(values, frequencies) Calculates signal intensity of IR spectrum.
dip_to_uv(values, wavelengths) Calculates signal intensity of UV spectrum.
osc_to_uv(values) Calculates signal intensity of UV spectrum.
rot_to_ecd(values, wavelengths) Calculates signal intensity of ECD spectrum.
rot_to_vcd(values, frequencies) Calculates signal intensity of VCD spectrum.

tesliper.datawork.intensities.dip_to_ir(values: numpy.ndarray, frequencies: numpy.ndarray)→
numpy.ndarray

Calculates signal intensity of IR spectrum.

Parameters

• values (numpy.ndarray) – Dipole strength values extracted from gaussian output files.

68 Chapter 3. References

tesliper, Release 0.9.3

• frequencies (numpy.ndarray) – Frequencies extracted from gaussian output files.

Returns List of calculated intensity values.

Return type numpy.ndarray

tesliper.datawork.intensities.rot_to_vcd(values: numpy.ndarray, frequencies: numpy.ndarray)→
numpy.ndarray

Calculates signal intensity of VCD spectrum.

Parameters

• values (numpy.ndarray) – Rotator strength values extracted from gaussian output files.

• frequencies (numpy.ndarray) – Frequencies extracted from gaussian output files.

Returns List of calculated intensity values.

Return type numpy.ndarray

tesliper.datawork.intensities.osc_to_uv(values: numpy.ndarray)→ numpy.ndarray
Calculates signal intensity of UV spectrum.

Parameters values (numpy.ndarray) – Oscillator strength values extracted from gaussian output
files.

Returns List of calculated intensity values.

Return type numpy.ndarray

tesliper.datawork.intensities.rot_to_ecd(values: numpy.ndarray, wavelengths: numpy.ndarray)→
numpy.ndarray

Calculates signal intensity of ECD spectrum.

Parameters

• values (numpy.ndarray) – Rotator strength values extracted from gaussian output files.

• wavelengths (numpy.ndarray) – Wavelengths extracted from gaussian output files.

Returns List of calculated intensity values.

Return type numpy.ndarray

tesliper.datawork.intensities.dip_to_uv(values: numpy.ndarray, wavelengths: numpy.ndarray)→
numpy.ndarray

Calculates signal intensity of UV spectrum.

Parameters

• values (numpy.ndarray) – Dipole strength values extracted from gaussian output files.

• wavelengths (numpy.ndarray) – Wavelengths extracted from gaussian output files.

Returns List of calculated intensity values.

Return type numpy.ndarray

3.8. tesliper 69

tesliper, Release 0.9.3

tesliper.datawork.spectra

Functions that deal with spectra and spectral data.

Functions

calculate_average(values, populations) Calculates weighted average of values, where popula-
tions are used as weights.

calculate_spectra(frequencies, intensities, ...) Calculates spectrum for each individual conformer.
convert_band(value, from_genre, to_genre) Convert one representation of band to another.
count_imaginary(frequencies) Finds number of imaginary frequencies of each con-

former.
find_imaginary(frequencies) Finds all conformers with imaginary frequency values.
find_offset(ax, ay, bx, by[, upscale]) Finds value, by which the spectrum should be shifted

along x-axis to best overlap with the first spectrum.
find_scaling(a, b) Find factor by which values b should be scaled to best

match values a.
gaussian(intensities, frequencies, abscissa, ...) Gaussian fitting function for spectra calculation.
idx_offset(a, b) Calculate offset by which b should be shifted to best

overlap with a.
lorentzian(intensities, frequencies, ...) Lorentzian fitting function for spectra calculation.
unify_abscissa(ax, ay, bx, by[, upscale]) Interpolate one of the given spectra to have the same

points density as the other given spectrum.

tesliper.datawork.spectra.count_imaginary(frequencies: numpy.ndarray)
Finds number of imaginary frequencies of each conformer.

Parameters frequencies – List of conformers’ frequencies. Array with one dimension is inter-
preted as list of frequencies for single conformer.

Returns Number of imaginary frequencies of each conformer.

Return type numpy.ndarray

Raises ValueError – If input array has more than 2 dimensions.

tesliper.datawork.spectra.find_imaginary(frequencies: numpy.ndarray)
Finds all conformers with imaginary frequency values.

Parameters frequencies – List of conformers’ frequencies.

Returns List of the indices of conformers with imaginary frequency values.

Return type numpy.ndarray

Raises ValueError – If input array has more than 2 dimensions.

tesliper.datawork.spectra.gaussian(intensities: numpy.ndarray, frequencies: numpy.ndarray, abscissa:
numpy.ndarray, width: Union[int, float])→ numpy.ndarray

Gaussian fitting function for spectra calculation.

Parameters

• intensities – Appropriate values extracted from gaussian output files.

• frequencies – Frequencies extracted from gaussian output files.

• abscissa – List of wavelength/wave number points on spectrum x axis.

70 Chapter 3. References

tesliper, Release 0.9.3

• width – Number representing half width of peak at 1/e its maximum height.

Returns List of calculated intensity values.

Return type numpy.ndarray

Raises ValueError – If given width is not greater than zero. If intensities and frequencies are not
of the sane shape.

tesliper.datawork.spectra.lorentzian(intensities: numpy.ndarray, frequencies: numpy.ndarray, abscissa:
numpy.ndarray, width: Union[int, float])→ numpy.ndarray

Lorentzian fitting function for spectra calculation.

Parameters

• intensities – Appropriate values extracted from gaussian output files.

• frequencies – Frequencies extracted from gaussian output files.

• abscissa – List of wavelength/wave number points on spectrum x axis.

• width – Number representing half width of peak at half its maximum height.

Returns List of calculated intensity values.

Return type numpy.ndarray

Raises ValueError – If given width is not greater than zero. If intensities and frequencies are not
of the same shape.

tesliper.datawork.spectra.calculate_spectra(frequencies: numpy.ndarray, intensities: numpy.ndarray,
abscissa: numpy.ndarray, width: Union[int, float], fitting:
Callable[[numpy.ndarray, numpy.ndarray, numpy.ndarray,
float], numpy.ndarray])

Calculates spectrum for each individual conformer.

Parameters

• frequencies – List of conformers’ frequencies in cm^(-1). Should be of shape (number
_of_conformers, number_of_frequencies).

• intensities – List of calculated signal intensities for each conformer. Should be of same
shape as frequencies.

• abscissa – List of points on x axis in output spectrum in cm^(-1).

• width (int or float) – Number representing peak width in cm^(-1), used by fitting func-
tion.

• fitting (function) – Function, which takes intensities, frequencies, abscissa, hwhm as
parameters and returns numpy.array of calculated spectrum points.

Returns Array of intensity values for each conformer.

Return type numpy.ndarray

Raises ValueError – If given width is not greater than zero. If intensities and frequencies are not
of the same shape.

tesliper.datawork.spectra.calculate_average(values: Union[Sequence[Union[int, float]],
numpy.ndarray], populations: Union[Sequence[Union[int,
float]], numpy.ndarray])→ numpy.ndarray

Calculates weighted average of values, where populations are used as weights.

Parameters

3.8. tesliper 71

tesliper, Release 0.9.3

• values – List of values for each conformer, should be of shape (N, M), where N is number
of conformers and M is number of values.

• populations – List of conformers’ populations, should be of shape (N,) where N is number
of conformers. Should add up to 1.

Returns weighted arithmetic mean of values given.

Return type numpy.ndarray

Raises ValueError – If parameters of non-matching shape were given.

tesliper.datawork.spectra.idx_offset(a: Sequence[Union[int, float]], b: Sequence[Union[int, float]])→
int

Calculate offset by which b should be shifted to best overlap with a. Both a and b should be sets of points,
interpreted as spectral data. Returned offset is a number of data points, by which b should be moved relative to
a, to get the best overlap of given spectra.

Parameters

• a – y values of the first spectrum.

• b – y values of the second spectrum.

Returns Offset, in number of data points, by which spectrum b should be shifted to best match spec-
trum a. Positive value means it should be shifted to the right and negative value means it should
be shifted to the left of a.

Return type int

Notes

The best overlap is found by means of cross-correlation of given spectra.

tesliper.datawork.spectra.unify_abscissa(ax: Sequence[Union[int, float]], ay: Sequence[Union[int,
float]], bx: Sequence[Union[int, float]], by:
Sequence[Union[int, float]], upscale: bool = True)→
Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Interpolate one of the given spectra to have the same points density as the other given spectrum.

Which spectra should be interpolated is determined based on the density of points of both spectra, by default
more loosely spaced spectrum is interpolated to match spacing of the other spectrum. This may be changed by
passing upscale=False to the function call.

Parameters

• ax – Abscissa of the first spectrum.

• ay – Values of the first spectrum.

• bx – Abscissa of the second spectrum.

• by – Values of the second spectrum.

• upscale – If interpolation should be done on more loosely spaced spectrum (default). When
set to False, spectrum with lower resolution will be treated as reference.

Returns Spectra, one unchanged and one interpolated, as a tuple of numpy arrays of x and y values.
I.e. tuple(ax, ay, new_bx, new_by) or tuple(new_ax, new_ay, bx, by), depending
on values of upscale parameter.

Return type tuple of np.arrays of numbers

72 Chapter 3. References

tesliper, Release 0.9.3

tesliper.datawork.spectra.find_offset(ax: Sequence[Union[int, float]], ay: Sequence[Union[int, float]],
bx: Sequence[Union[int, float]], by: Sequence[Union[int, float]],
upscale: bool = True)→ float

Finds value, by which the spectrum should be shifted along x-axis to best overlap with the first spectrum. If
resolution of spectra is not identical, one of them will be interpolated to match resolution of the other one. By
default interpolation is done on the lower-resolution spectra. This can be changed by passing upscale = False
to function call.

Parameters

• ax – Abscissa of the first spectrum.

• ay – Values of the first spectrum.

• bx – Abscissa of the second spectrum.

• by – Values of the second spectrum.

• upscale – If interpolation should be done on more loosely spaced spectrum (default). When
set to False, spectrum with lower resolution will be treated as reference for density of data
points.

Returns Value, by which second spectrum should be shifted, in appropriate units.

Return type float

tesliper.datawork.spectra.find_scaling(a: Sequence[Union[int, float]], b: Sequence[Union[int, float]])
→ float

Find factor by which values b should be scaled to best match values a.

Parameters

• a – y values of the first spectrum.

• b – y values of the second spectrum.

Returns Scaling factor for b values.

Return type float

Notes

If scaling factor cannot be reasonably given, i.e. when b is an empty list or list of zeros or NaNs, 1.0 is returned.
Values lower than 1% of maximum are ignored.

tesliper.datawork.spectra.convert_band(value: Union[float, numpy.ndarray], from_genre: str, to_genre:
str)→ Union[float, numpy.ndarray]

Convert one representation of band to another.

Parameters

• value – Value(s) to convert.

• from_genre – Genre specifying a representation of band of input data. Should be one of:
‘freq’, ‘wavelen’, ‘ex_en’.

• to_genre – Genre specifying a representation of band, to which you want to convert. Should
be one of: ‘freq’, ‘wavelen’, ‘ex_en’.

Returns Requested representation of bands. If from_genre is same as to_genre, then simply value is
returned.

Return type float or np.ndarray

3.8. tesliper 73

tesliper, Release 0.9.3

3.8.2 tesliper.exceptions

Project-specific errors.

Exceptions

InconsistentDataError Raised to signalize problems with conformers' data con-
sistency.

InvalidElementError Used by tesliper to indicate, that value cannot be inter-
preted as an element.

InvalidStateError Used by ParserBase class to signalize problems when
handling states.

TesliperError Base class for Exceptions used by tesliper library.

exception tesliper.exceptions.TesliperError

Base class for Exceptions used by tesliper library.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception tesliper.exceptions.InconsistentDataError

Raised to signalize problems with conformers’ data consistency. Subclasses TesliperError.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception tesliper.exceptions.InvalidStateError

Used by ParserBase class to signalize problems when handling states. Subclasses TesliperError and ValueError.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

exception tesliper.exceptions.InvalidElementError

Used by tesliper to indicate, that value cannot be interpreted as an element. Subclasses TesliperError and Val-
ueError.

with_traceback()

Exception.with_traceback(tb) – set self.__traceback__ to tb and return self.

3.8.3 tesliper.extraction

Classes for reading and parsing files.

Abstract Base Class for parsers, as well as concrete parser implementations are defined in this subpackage. It also
contains a Soxhlet class that is designed to orchestrate batch data extraction.

74 Chapter 3. References

tesliper, Release 0.9.3

Modules

tesliper.extraction.gaussian_parser Paser for Gaussian output files.
tesliper.extraction.parameters_parser Parser for reading spectra calculation parameters from

file.
tesliper.extraction.parser_base This module contains a definition of Abstract Base Class

for file parsers.
tesliper.extraction.soxhlet A tool for batch parsing files from specified directory.
tesliper.extraction.spectra_parser Parser for spectra files.

tesliper.extraction.gaussian_parser

Paser for Gaussian output files.

Classes

GaussianParser() Parser for extracting data from human-readable output
files from Gaussian computational chemistry software
(.log and .out files).

class tesliper.extraction.gaussian_parser.GaussianParser

Parser for extracting data from human-readable output files from Gaussian computational chemistry software
(.log and .out files).

This class implements methods for reading information about conducted calculations’ parameters, molecule en-
ergy, structure optimization, and calculation of spectral properties. It’s use is as straightforward as:

>>> parser = GaussianParser()
>>> with open('path/to/file.out') as file:
>>> data = parser.parse(file)

Dictionary with data extracted is also stored as data attribute of instance used for parsing. Each key in said
dictionary is a name of its value data type, called from now on a ‘data genre’ (to avoid confusion with Python’s
data type). Below is a full list of data genres recognized by this parser, with their description:

freq [list of floats, available from freq job] harmonic vibrational frequencies (cm^-1)

mass [list of floats, available from freq job] reduced masses (AMU)

frc [list of floats, available from freq job] force constants (mDyne/A)

iri [list of floats, available from freq job] IR intensities (KM/mole)

dip [list of floats, available from freq=VCD job] dipole strengths (10**-40 esu**2-cm**2)

rot [list of floats, available from freq=VCD job] rotational strengths (10**-44 esu**2-cm**2)

emang [list of floats, available from freq=VCD job] E-M angle = Angle between electric and magnetic dipole
transition moments (deg)

depolarp [list of floats, available from freq=Raman job] depolarization ratios for plane incident light

depolaru [list of floats, available from freq=Raman job] depolarization ratios for unpolarized incident light

ramanactiv [list of floats, available from freq=Raman job] Raman scattering activities (A**4/AMU)

3.8. tesliper 75

tesliper, Release 0.9.3

ramact [list of floats, available from freq=ROA job] Raman scattering activities (A**4/AMU)

depp [list of floats, available from freq=ROA job] depolarization ratios for plane incident light

depu [list of floats, available from freq=ROA job] depolarization ratios for unpolarized incident light

alpha2 [list of floats, available from freq=ROA job] Raman invariants Alpha2 = alpha**2 (A**4/AMU)

beta2 [list of floats, available from freq=ROA job] Raman invariants Beta2 = beta(alpha)**2 (A**4/AMU)

alphag [list of floats, available from freq=ROA job] ROA invariants AlphaG = alphaG’(10**4 A**5/AMU)

gamma2 [list of floats, available from freq=ROA job] ROA invariants Gamma2 = beta(G’)**2 (10**4
A**5/AMU)

delta2 [list of floats, available from freq=ROA job] ROA invariants Delta2 = beta(A)**2, (10**4 A**5/AMU)

raman1 [list of floats, available from freq=ROA job] Far-From-Resonance Raman intensities =ICPu/SCPu(180)
(K)

roa1 [list of floats, available from freq=ROA job] ROA intensities =ICPu/SCPu(180) (10**4 K)

cid1 [list of floats, available from freq=ROA job] CID=(ROA/Raman)*10**4 =ICPu/SCPu(180)

raman2 [list of floats, available from freq=ROA job] Far-From-Resonance Raman intensities =ICPd/SCPd(90)
(K)

roa2 [list of floats, available from freq=ROA job] ROA intensities =ICPd/SCPd(90) (10**4 K)

cid2 [list of floats, available from freq=ROA job] CID=(ROA/Raman)*10**4 =ICPd/SCPd(90)

raman3 [list of floats, available from freq=ROA job] Far-From-Resonance Raman intensities =DCPI(180) (K)

roa3 [list of floats, available from freq=ROA job] ROA intensities =DCPI(180) (10**4 K)

cid3 [list of floats, available from freq=ROA job] CID=(ROA/Raman)*10**4 =DCPI(180)

rc180 [list of floats, available from freq=ROA job] RC180 = degree of circularity

wavelen [list of floats, available from td job] excitation energies (nm)

ex_en [list of floats, available from td job] excitation energies (eV)

eemang [list of floats, available from td job] E-M angle = Angle between electric and magnetic dipole transition
moments (deg)

vdip [list of floats, available from td job] dipole strengths (velocity)

ldip [list of floats, available from td job] dipole strengths (length)

vrot [list of floats, available from td job] rotatory strengths (velocity) in cgs (10**-40 erg-esu-cm/Gauss)

lrot [list of floats, available from td job] rotatory strengths (length) in cgs (10**-40 erg-esu-cm/Gauss)

vosc [list of floats, available from td job] oscillator strengths

losc [list of floats, available from td job] oscillator strengths

transitions [list of lists of lists of (int, int, float), available from td job] transitions (first to second) and their
coefficients (third)

scf [float, always available] SCF energy

zpe [float, available from freq job] Sum of electronic and zero-point Energies (Hartree/Particle)

ten [float, available from freq job] Sum of electronic and thermal Energies (Hartree/Particle)

ent [float, available from freq job] Sum of electronic and thermal Enthalpies (Hartree/Particle)

gib [float, available from freq job] Sum of electronic and thermal Free Energies (Hartree/Particle)

76 Chapter 3. References

tesliper, Release 0.9.3

zpecorr [float, available from freq job] Zero-point correction (Hartree/Particle)

tencorr [float, available from freq job] Thermal correction to Energy (Hartree/Particle)

entcorr [float, available from freq job] Thermal correction to Enthalpy (Hartree/Particle)

gibcorr [float, available from freq job] Thermal correction to Gibbs Free Energy (Hartree/Particle)

command [str, always available] command used for calculations

normal_termination [bool, always available] true if Gaussian job seem to exit normally, false otherwise

optimization_completed [bool, available from opt job] true if structure optimization was performed success-
fully

version [str, always available] version of Gaussian software used

charge [int, always available] molecule’s charge

multiplicity [int, always available] molecule’s spin multiplicity

input_atoms [list of str, always available] input atoms as a list of atoms’ symbols

input_geom [list of lists of floats, always available] input geometry as X, Y, Z coordinates of atoms

stoichiometry [str, always available] molecule’s stoichiometry

last_read_atoms [list of ints, always available] molecule’s atoms as atomic numbers

last_read_geom [list of lists of floats, always available] molecule’s geometry (last one found in file) as X, Y, Z
coordinates of atoms

optimized_atoms [list of ints, available from successful opt job] molecule’s atoms read from optimized geom-
etry as atomic numbers

optimized_geom [list of lists of floats, available from successful opt job] optimized geometry as X, Y, Z coor-
dinates of atoms

data

Data extracted during last parsing.

Type dict

parse(lines)→ dict
Parses content of Gaussian output file and returns dictionary of found data.

Parameters lines (iterator) – Gaussian output file in a form iterable by lines of text. It may
be a file handle, a list of strings, an io.StringIO instance, or similar. Please note that it should
not be just a string instance, as it is normally iterated by a character, not by a line.

Returns Dictionary of extracted data.

Return type dict

initial(line: str)→ None
First step of parsing Gaussian output file. It populates parser.data dictionary with these data genes: ‘nor-
mal_termination’, ‘version’, ‘command’, ‘charge’, ‘multiplicity’, ‘input_geom’. Optionally, ‘optimiza-
tion_completed’ genre is added if optimization was requested in calculation job.

Parameters line (str) – Line of text to parse.

wait(line: str)→ None
This function searches for lines of text triggering other parsing states. It also updates a parser.data dictionary
with ‘normal_termination’, ‘scf’, ‘stoichiometry’ data genres.

Parameters line (str) – Line of text to parse.

3.8. tesliper 77

tesliper, Release 0.9.3

geometry(line: str)→ None
Function for extracting information about molecule standard orientation geometry from Gaussian output
files. It updates parser.data dictionary with ‘last_read_atoms’ and ‘last_read_geom’ data genres.

Parameters line (str) – Line of text to parse.

optimization(line: str)→ None
This method scans optimization data in Gaussian output file, updating parser.data dictionary with ‘stoi-
chiometry’, ‘scf’, ‘optimization_completed’, ‘optimized_atoms’, and ‘optimized_geom’ data genres (last
two via geometry() method).

Parameters line (str) – Line of text to parse.

frequencies(line: str)→ None
Responsible for extracting harmonic vibrations-related data and information about molecule’s energy.

Parameters line (str) – Line of text to parse.

excited(line: str)→ None
Responsible for extracting electronic transitions-related data from Gaussian output file. Updates parser.data
dictionary with ‘ldip’, ‘losc’, ‘vdip’, ‘vosc’, ‘vrot’, ‘eemang’, ‘lrot’, ‘wavelen’, ‘ex_en’, and ‘transitions’ data
genres.

Parameters line (str) – Line of text to parse.

add_state(state: Callable, name: str = '', trigger: str = '')
Register callable as parser’s state.

This method registers a callable under name key in states dictionary. If trigger parameter is given, it is
registered under the same key in triggers dictionary.

Parameters

• state (Callable) – callable, that is to be registered as parser’s state

• name (str, optional) – name under which the callable should be registered; defaults to
callable.__name__

• trigger (str, optional) – string with regular expression, that will be compiled with
re module

Returns callable object registered as state

Return type Callable

remove_state(name: str)
Removes the state from parser’s registered states.

Parameters name (str) – name of state, that should be unregistered

Raises InvalidStateError – if no callable was registered under the name ‘name’

static state(state=None, trigger=None)
Convenience decorator for registering a method as parser’s state. It can be with or without ‘trigger’ param-
eter, like this:

>>> @ParserBase.state
... def method(self, arg): pass

or

78 Chapter 3. References

tesliper, Release 0.9.3

>>> @ParserBase.state(trigger='triggering regex')
... def method(self, arg): pass

This function marks a method state as parser’s state by defining is_state attribute on said method and
setting its values to True. If trigger is given, it is stored in method’s attribute trigger. During instantiation
of ParserBase’s subclass, methods marked as states are registered under method.__name__ key in its
states (and possibly triggers) attribute. It is meaningless if used outside of ParserBase’s subclass
definition.

Parameters

• state (Callable) – callable, that is to be registered as parser’s state

• trigger (str, optional) – string with regular expression, that will be compiled with
re module

Returns callable object registered as state if ‘state’ was given or decorator if only ‘trigger’ was
given

Return type Callable

Raises

• TypeError – if no arguments given

• InvalidStateError – if state argument is not callable

property workhorse: Callable

Callable marked as a current state used by parser object.

Setter can take a callable or a string as a parameter. If name as string is passed to setter, it will be translated
to a method registered as state. If no method was registered under this name, InvalidStateError will
be raised. No other checks are performed when argument is callable.

tesliper.extraction.parameters_parser

Parser for reading spectra calculation parameters from file.

Functions

fitting(s) Get fitting function mentioned in a given string s, ignor-
ing anything else.

quantity(s) Convert to float first occurrence of float-looking part of
string s, ignoring anything else.

Classes

ParametersParser() Parser for configuration files containing spectra calcula-
tion parameters.

tesliper.extraction.parameters_parser.quantity(s: str)→ float
Convert to float first occurrence of float-looking part of string s, ignoring anything else. Raise configparser.
ParsingError if float cannot be found.

3.8. tesliper 79

tesliper, Release 0.9.3

Parameters s (str) – string containing a float

Returns extracted float value

Return type float

tesliper.extraction.parameters_parser.fitting(s: str)→ Callable
Get fitting function mentioned in a given string s, ignoring anything else. Raise configparser.ParsingError
if known function name cannot be found.

Parameters s (str) – string containing name of fitting function

Returns an identified fitting function

Return type callable

class tesliper.extraction.parameters_parser.ParametersParser

Parser for configuration files containing spectra calculation parameters.

Configuration file should be in format similar to .ini files: a list of key-value pairs, separated with “=” or “:”, one
pair for line. Standard parameters (width, start, stop, step, and fitting) will be converted to appropriate data type,
i.e. float or function reference. If parameter value cannot be converted to its target type, it will be ignored and
warning will be emitted. Any other (unexpected) parameters are included in the output and left as they are.

The parser is case-insensitive and knows some alias names of expected parameters: for instance, “hwhm”, “half
width of band in half height”, “half width at half maximum” will be all recognized as “width” parameter. If you
wish to add custom aliases, update ParametersParser.ALIASES dictionary with appropriate “alias”: “target”
pair.

Notes

ParametersParser is using Python’s configparser, so it will parse files that contain a section header, enclosed
in braces. However, the section name will be ignored and there may be only one such section, otherwise an
exception is raised.

optionxform(optionstr: str)→ str
Translates option names to desired form - lowercase and standard wording, as defined in ALIASES.

property parameters: dict

Dictionary of parameters for calculating spectra extracted from parsed file and converted to appropriate
type.

parse(source: Union[str, pathlib.Path])
Parse given source file to get stored parameters.

Parameters source (str or Path) – Path to file with calculations’ parameters.

Returns Parsed parameters.

Return type dict

80 Chapter 3. References

tesliper, Release 0.9.3

tesliper.extraction.parser_base

This module contains a definition of Abstract Base Class for file parsers.

Classes

ParserBase() Abstract Base Class for parsers implemented as finite
state machines.

class tesliper.extraction.parser_base.ParserBase

Abstract Base Class for parsers implemented as finite state machines.

This base class defines some methods to organize work parsers implemented as finite state machines: automates
registration of methods and functions as parser’s states, manages its execution, and registers derived class as
parser used for certain type of files (which registry is used by Soxhlet object).

The default parsing flow goes as follow:

1. method parse() is called with file handle as argument;

2. method initial() is set as a ‘workhorse’

3. ‘workhorse’ is called for consecutive lines in file handle

4. initial() checks if any registered trigger matches current line

5. workhorse() is changed to method associated with first matching trigger

6. calling ‘workhorse’ on consecutive lines continues

7. parse() returns dictionary with extracted values

To make this possible, each method marked as state should return dictionary (or sequence convertible to dict) and
handle changing ‘workhorse’ to next appropriate state. To mark a method as parser’s state use ParserBase.state
decorator in class definition or add a state directly to parser instance using ‘add_state’ method.

When subclassing ParserBase, one should implement initial() and parse() methods. Those abstract meth-
ods implement basic functionality, described above. See methods’ documentation for more details. If you wish
not to use default ParserBase’s protocol, simply override those methods to your liking. Values for class attributes
extensions and purpose should also be provided.

To register class derived from ParserBase for use by Soxhlet object, simply set purpose class attribute to name,
under which class should be registered. Setting it to one of names already defined (e.g. ‘gaussian’) will override
the default parser used by Soxhlet object.

states

Dictionary of parser states, created automatically on object instantiation from object methods marked as
states; method name is used as a key by default.

Type dict

triggers

Dictionary of triggers for parser states, created automatically on object instantiation from object methods
marked as states with triggers; key for a particular state trigger should be the same as state’s key in states
dictionary.

Type dict

3.8. tesliper 81

tesliper, Release 0.9.3

abstract property extensions

File extensions that should be cosidered compatible with a parser subclassing ParserBase. It will be used
by Soxhlet to identify which files to parse when reading files in batch. Should be a class attribute with a
tuple of str, where each element is a file extension. May also be an empty tuple, if files discovery feature is
not needed for the parser.

abstract property purpose

An identifier for a parser subclassing ParserBase. It allows tesliper to pick a correct parser for each
parsing task. A falsy value, i.e. an empty string or None prevents the parser from beeing registered for
use by tesliper. If custom subclass uses a purpose already known, e.g. “gaussian” or “spectra”, it will
override the original parser for this purpose.

property workhorse: Callable

Callable marked as a current state used by parser object.

Setter can take a callable or a string as a parameter. If name as string is passed to setter, it will be translated
to a method registered as state. If no method was registered under this name, InvalidStateError will
be raised. No other checks are performed when argument is callable.

add_state(state: Callable, name: str = '', trigger: str = '')
Register callable as parser’s state.

This method registers a callable under name key in states dictionary. If trigger parameter is given, it is
registered under the same key in triggers dictionary.

Parameters

• state (Callable) – callable, that is to be registered as parser’s state

• name (str, optional) – name under which the callable should be registered; defaults to
callable.__name__

• trigger (str, optional) – string with regular expression, that will be compiled with
re module

Returns callable object registered as state

Return type Callable

remove_state(name: str)
Removes the state from parser’s registered states.

Parameters name (str) – name of state, that should be unregistered

Raises InvalidStateError – if no callable was registered under the name ‘name’

abstract initial(line: str)→ dict
An initial parser state.

A default implementation checks if any of defined triggers matches a line and sets an associated state as
parser’s workhorse, if it does. This is an abstract method and should be overridden in subclass. Its default
implementation can be used, however, by calling super().initial(line) in subclass’s method.

82 Chapter 3. References

tesliper, Release 0.9.3

Notes

initial() method is always registered as parser’s state.

Parameters line (str) – currently parsed line

Returns empty dictionary

Return type dict

abstract parse(lines: Iterable)→ dict
Parses consecutive elements of iterable and returns data found as dictionary.

Dictionary with extracted data is updated with workhorse’s return value, so all states should return dictio-
nary or compatible sequence. This is an abstract method and should be overridden in subclass. Its default
implementation can be used, however, by calling data = super().parse(lines) in subclass’s method.

Notes

After execution - either successful or interrupted by exception - workhorse is set back to initial()
method.

Parameters lines (Iterable) – iterable (i.e. file handle), that will be parsed, line by line

Returns dictionary with data extracted by parser

Return type dict

Raises InvalidStateError – if dictionary can’t be updated with state’s return value

static state(state=None, trigger=None)
Convenience decorator for registering a method as parser’s state. It can be with or without ‘trigger’ param-
eter, like this:

>>> @ParserBase.state
... def method(self, arg): pass

or

>>> @ParserBase.state(trigger='triggering regex')
... def method(self, arg): pass

This function marks a method state as parser’s state by defining is_state attribute on said method and
setting its values to True. If trigger is given, it is stored in method’s attribute trigger. During instantiation
of ParserBase’s subclass, methods marked as states are registered under method.__name__ key in its
states (and possibly triggers) attribute. It is meaningless if used outside of ParserBase’s subclass
definition.

Parameters

• state (Callable) – callable, that is to be registered as parser’s state

• trigger (str, optional) – string with regular expression, that will be compiled with
re module

Returns callable object registered as state if ‘state’ was given or decorator if only ‘trigger’ was
given

Return type Callable

Raises

3.8. tesliper 83

tesliper, Release 0.9.3

• TypeError – if no arguments given

• InvalidStateError – if state argument is not callable

tesliper.extraction.soxhlet

A tool for batch parsing files from specified directory.

Classes

Soxhlet([path, purpose, wanted_files, ...]) A tool for data extraction from files in specific directory.

class tesliper.extraction.soxhlet.Soxhlet(path: Optional[Union[str, pathlib.Path]] = None, purpose:
str = 'gaussian', wanted_files: Optional[Iterable[Union[str,
pathlib.Path]]] = None, extension: Optional[str] = None,
recursive: bool = False)

A tool for data extraction from files in specific directory. Typical use:

>>> s = Soxhlet('absolute/path_to/working/directory')
>>> data = s.extract()

Parameters

• path (str or pathlib.Path) – String representing absolute path to directory containing
files, which will be the subject of data extraction.

• purpose (str) – Determines which from registered parsers should be used for extraction.
purposes supported out-of-the-box are “gaussian”, “spectra”, and “parameters”.

• wanted_files (list of str or pathlib.Path objects, optional) – List of files,
that should be loaded for further extraction. If omitted, all output files present in directory
will be processed.

• extension (str, optional) – A string representing file extension of output files, that
should be parsed. If omitted, Soxhlet will try to resolve it based on contents of directory
given in path parameter.

• recursive (bool) – If True, given path will be searched recursively, extracting data from
subdirectories, otherwise subdirectories are ignored and only files placed directly in path
will be parsed.

Raises

• FileNotFoundError – If path passed as argument to constructor doesn’t exist or is not a
directory.

• ValueError – If no parser is registered for given purpose.

property all_files

List of all files present in directory bounded to Soxhlet instance. If its recursive attribute is True, also files
from subdirectories are included.

property files

List of all wanted files available in given directory. If wanted_files is not specified, evaluates to all files in
said directory. If Soxhlet object’s recursive attribute is True, also files from subdirectories are included.

84 Chapter 3. References

tesliper, Release 0.9.3

property wanted_files: Optional[Set[str]]

Set of files that are desired for data extraction, stored as filenames without an extension. Any iterable of
strings or Path objects is transformed to this form.

>>> s = Soxhlet()
>>> s.wanted_files = [Path("./dir/file_one.out"), Path("./dir/file_two.out")]
>>> s.wanted_files
{"file_one", "file_two"}

May also be set to None or other “falsy” value, in such case it is ignored.

property output_files: List[pathlib.Path]

List of (sorted by file name) gaussian output files from files list associated with Soxhlet instance.

filter_files(ext: Optional[str] = None)→ List[pathlib.Path]
Filters files from filenames list.

Filters file names in list associated with Soxhlet object instance. It returns list of file names ending with
provided ext string, representing file extension and starting with any of filenames associated with instance
as wanted_files if those were provided.

Parameters ext (str) – Strings representing file extension.

Returns List of filtered filenames as strings.

Return type list

Raises ValueError – If parameter ext is not given and attribute extension in None.

guess_extension()→ str
Tries to figure out which extension should be assumed.

Looks for files, which names end with one of the extensions defined by currently used parser. Returns
extension that matches as the only one. Raises an exception if extension cannot be easily guessed.

Returns The extension of files that are present in filenames list, which current parser can parse.

Return type str

Raises

• ValueError – If more than one type of files declared by a current parser as possibly com-
patible is present in list of filenames.

• FileNotFoundError – If none of files declared by a current parser as possibly compatible
are present in list of filenames.

• TypeError – If current parser does not declare any compatible file extensions.

extract_iter()→ Generator[Tuple[str, dict], None, None]
Extracts data from files associated with Soxhlet instance (via path and wanted_files attributes), using
a current parser (determined by a purpose provided on Soxhlet’s instantiation). Implemented as generator.
If Soxhlet instance’s recursive attribute is True, also files from subdirectories are parsed.

Yields tuple – Two item tuple with name of parsed file as first and extracted data as second item,
for each file associated with Soxhlet instance.

extract()→ dict
Extracts data from files associated with Soxhlet instance (via path and wanted_files attributes), using
a current parser (determined by a purpose provided on Soxhlet’s instantiation). If Soxhlet.recursive
attribute is True, also files from subdirectories are parsed.

3.8. tesliper 85

tesliper, Release 0.9.3

Returns dictionary of extracted data, with name of parsed file as key and data as value, for each
file associated with Soxhlet instance.

Return type dict of dicts

parse_one(source: Union[str, pathlib.Path])→ Any
Parse one file using current parser (determined by a purpose provided on Soxhlet’s instantiation) and
return extracted data.

Parameters source (str or Path) – Path or Path-like object to a file. May be given as an
absolute path or relative to the Soxhlet.path.

Returns Data in a format that current parser provides.

Return type any

Raises FileNotFoundError – If no source file is found.

tesliper.extraction.spectra_parser

Parser for spectra files.

Classes

SpectraParser() Parser for files containing spectral data.

class tesliper.extraction.spectra_parser.SpectraParser

Parser for files containing spectral data. It can parse .txt (in “x y” format) and .csv files, returning an
numpy.ndarray with loaded spectrum. Parsing process may be customized by specifying what delimiter of values
should be expected and in which column x- and y-values are, if there are more than 2 columns of data. If file
contains any header, it is ignored.

parse(filename: Union[str, pathlib.Path], delimiter: Optional[str] = None, xcolumn: int = 0, ycolumn: int =
1)→ numpy.ndarray

Loads spectral data from file to numpy.array. Currently supports only .txt, .xy, and .csv files.

Parameters

• filename (str) – path to file containing spectral data

• delimiter (str, optional) – character used to delimit columns in file, defaults to
whitespace

• xcolumn (int, optional) – column, that should be used as points on x axis, defaults to
0 (first column)

• ycolumn (int, optional) – column, that should be used as values on y axis, defaults to
1 (second column)

Returns two-dimensional numpy array ([[x-values], [y-values]]) of data type float

Return type numpy.array

initial(filename: str)
An initial parser state.

A default implementation checks if any of defined triggers matches a line and sets an associated state as
parser’s workhorse, if it does. This is an abstract method and should be overridden in subclass. Its default
implementation can be used, however, by calling super().initial(line) in subclass’s method.

86 Chapter 3. References

tesliper, Release 0.9.3

Notes

initial() method is always registered as parser’s state.

Parameters line (str) – currently parsed line

Returns empty dictionary

Return type dict

parse_txt(file: pathlib.Path)
Loads spectral data from .txt or .xy file to numpy.array.

Parameters

• file (str) – path to file containing spectral data

• delimiter (str, optional) – character used to delimit columns in file, defaults to
whitespace

• xcolumn (int, optional) – column, that should be used as points on x axis, defaults to
0 (first column)

• ycolumn (int, optional) – column, that should be used as values on y axis, defaults to
1 (second column)

Returns

• numpy.array – two-dimensional numpy array ([[x-values], [y-values]]) of data type ‘float’

• Rises

• —–

• ValueError – if file passed was read to end, but no spectral data was found; this includes
columns’ numbers out of range and usage of inappropriate delimiter

parse_csv(file: pathlib.Path)
Loads spectral data from csv file to numpy.array.

Parameters

• file (str) – path to file containing spectral data

• delimiter (str, optional) – character used to delimit columns in file, defaults to ‘,’

• xcolumn (int, optional) – column, that should be used as points on x axis, defaults to
0 (first column)

• ycolumn (int, optional) – column, that should be used as values on y axis, defaults to
1 (second column)

Returns two-dimensional numpy array ([[x-values], [y-values]]) of data type ‘float’

Return type numpy.array

parse_spc(file)
Loads spectral data from spc file to numpy.array.

3.8. tesliper 87

tesliper, Release 0.9.3

Notes

This method is not implemented yet, it will raise an error when called.

Parameters file (str) – path to file containing spectral data

Returns two-dimensional numpy array ([[x-values], [y-values]]) of data type ‘float’

Return type numpy.array

Raises NotImplementedError – Whenever called, as this functionality is not implemented yet.

add_state(state: Callable, name: str = '', trigger: str = '')
Register callable as parser’s state.

This method registers a callable under name key in states dictionary. If trigger parameter is given, it is
registered under the same key in triggers dictionary.

Parameters

• state (Callable) – callable, that is to be registered as parser’s state

• name (str, optional) – name under which the callable should be registered; defaults to
callable.__name__

• trigger (str, optional) – string with regular expression, that will be compiled with
re module

Returns callable object registered as state

Return type Callable

remove_state(name: str)
Removes the state from parser’s registered states.

Parameters name (str) – name of state, that should be unregistered

Raises InvalidStateError – if no callable was registered under the name ‘name’

static state(state=None, trigger=None)
Convenience decorator for registering a method as parser’s state. It can be with or without ‘trigger’ param-
eter, like this:

>>> @ParserBase.state
... def method(self, arg): pass

or

>>> @ParserBase.state(trigger='triggering regex')
... def method(self, arg): pass

This function marks a method state as parser’s state by defining is_state attribute on said method and
setting its values to True. If trigger is given, it is stored in method’s attribute trigger. During instantiation
of ParserBase’s subclass, methods marked as states are registered under method.__name__ key in its
states (and possibly triggers) attribute. It is meaningless if used outside of ParserBase’s subclass
definition.

Parameters

• state (Callable) – callable, that is to be registered as parser’s state

• trigger (str, optional) – string with regular expression, that will be compiled with
re module

88 Chapter 3. References

tesliper, Release 0.9.3

Returns callable object registered as state if ‘state’ was given or decorator if only ‘trigger’ was
given

Return type Callable

Raises

• TypeError – if no arguments given

• InvalidStateError – if state argument is not callable

property workhorse: Callable

Callable marked as a current state used by parser object.

Setter can take a callable or a string as a parameter. If name as string is passed to setter, it will be translated
to a method registered as state. If no method was registered under this name, InvalidStateError will
be raised. No other checks are performed when argument is callable.

3.8.4 tesliper.glassware

Data containers.

Modules

tesliper.glassware.array_base Core functionality of DataArray classes.
tesliper.glassware.arrays Implements DataArray-like objects for handling ar-

rayed data.
tesliper.glassware.conformers A tesliper's main data storage.
tesliper.glassware.spectra Objects representing spectra.

tesliper.glassware.array_base

Core functionality of DataArray classes.

This module implements the base class for DataArrays and its core functionality, namely validation of array-like data,
along with some helper functions. To implement a DataArray-like container, subclass the ArrayBase class and use
one of the ArrayProperty classes to create a validated array-like instance attribute for your new class. You should
also provide associated_genres class attribute to signalize, which genres this new DataArray-like class should be used
for.

The most basic example may look like this:

>>> class MyDataArray(ArrayBase):
... associated_genres = ("foo",)
... filenames = ArrayProperty(dtype=str)
... values = ArrayProperty(check_against="filenames")
... def __init__(genre, filenames, values, allow_data_inconsistency=False):
... super().__init__(genre, filenames, values, allow_data_inconsistency)

>>> foo_array = MyDataArray("foo", ["a", "b", "c"], values=[1, 2, 3])

This definition would be almost a re-implementation of what ArrayBase already provides, but is a good starting point
for explanation, so lets elaborate on it a little. ArrayBase expects 4 parameters on initialization of its subclass: genre
is a genre of data stored, filenames is a list of conformer identifiers, values is - not surprisingly - a list of data values

3.8. tesliper 89

tesliper, Release 0.9.3

for each conformer, and allow_data_inconsistency is a boolean flag that controls process of validation of array-like
attributes.

filenames and values are ArrayProperty instances - values passed to the constructor as parameters of these names
will be checked and validated, and stored as numpy.ndarrays. Moreover, filenames will be stored as strings, because
we told the ArrayProperty this is our desired data type for this array-like attribute, using dtype=str. The default
data type is float, so values will be converted to floats.

>>> foo_array.filenames
array(["a", "b", "c"], dtype=str)
>>> foo_array.values
array([1.0, 2.0, 3.0], dtype=float)

check_against="filenames" tells ArrayProperty to validate values using filenames as a reference for desired
shape of values array. If shape is different than shape of the reference, InconsistentDataError is raised. If you will
deal with multidimensional data, you can utilize check_depth parameter to signalize that arrays should have identical
shapes only to some certain depth, for example check_depth=2 would accept arrays of shapes (10, 20) and (10, 20, 3)
but would raise exception on arrays shaped (10,) and (10, 3). However, in our simple example it wouldn’t make much
sense to check more than default depth of 1, since filenames have only one dimension.

>>> MyDataArray("foo", ["a", "b", "c"], values=[1, 2, 3, 4])
Traceback (most recent call last):

...
InconsistentDataError: values and filenames must have the same shape up to 1 dimensions.
Arrays of shape (3,) and (4,) were given.

The above exception is also raised if values given to ArrayProperty are a jagged sequence, that is not all entries of
the array have identical number of sub-entries. An example of jagged array would be [[1, 2], [3]]. Data in this
format usually comes from reading calculations of different molecules rather than conformers, or from corrupted or
incomplete output files, so it is not allowed by default. However, if you are sure that you want to work with such data,
you can pass allow_data_inconsistency=True to your MyDataArray constructor and ArrayProperty will try
to fill-in missing values, producing numpy.ma.masked_array or at least will ignore inconsistencies. You can chose
the fill value by specifying fill_value parameter on ArrayProperty instantiation.

Finally we specify associated_genres = ("foo",), which is the only thing in our example that’s not already
defined by ArrayBase. This class attribute informs Conformers object that it should use this ArrayBase subclass to
instantiate DataArray-like objects for data genres specified in associated_genres. It must be specified as a tuple of
strings, buy may be left empty, if no genre should be associated with this particular class. However, the main pourpose
of ArrayBase is to provide integration with Conformers machinery - if you wish to use ArrayProperty’s validation
features only, you may safely use if in a custom class. It may define allow_data_inconsistency attribute, but it is
optional (False is assumed).

>>> class CustomDataHolder:
... allow_data_inconsistency=True # class-level attribute will also work
... points = ArrayProperty(fill_value=0)
... def __init__(self, points):
... self.points = points
...
>>> d = CustomDataHolder(points=((1,2,3),(1,2)))
>>> d.points
masked_array(
data=[[1.0, 2.0, 3.0],

[1.0, 2.0, --]],
mask=[[False, False, False],

[False, False, True]],
(continues on next page)

90 Chapter 3. References

tesliper, Release 0.9.3

(continued from previous page)

fill_value=0)

genre, filenames, values, and allow_data_inconsistency are stored on ArrayBase subclass automatically, if super().
__init__() is called. However, if you introduce any new init parameters, you must bind them to the object by your-
self. Moreover, if you wish to use Conformers automatic initialization of ArrayBase subclasses, you should name
those additional parameters with a name of genre you’d like to be retrived or give them a default value, otherwise
Conformers.arrayed() won’t know how to initialize such class.

Functions

find_best_shape(jagged) Find shape of an array, that could fit arbitrarily deep,
jagged, nested sequence of sequences.

flatten(items[, depth]) Yield items from any nested iterable as chain of values
up to given depth.

longest_subsequences(sequences) Finds lengths of longest subsequences on each level of
given nested sequence.

mask(jagged) Returns a numpy.array of booleans, of shape that best fits
given jagged nested sequence jagged.

to_masked(jagged[, dtype, fill_value]) Convert jagged, arbitrarily deep, nested sequence to
numpy.ma.masked_array with missing entries masked.

Classes

ArrayBase(genre, filenames, values[, ...]) Base class for data holding objects.
ArrayProperty(fget, numpy.ndarray]] = None, ...) Property, that validates array-like value given to its setter

and stores it as numpy.ndarray.
CollapsibleArrayProperty(fget, ...) ArrayProperty that stores only one value, if all entries

are identical.
DependentParameter(name, kind, genre_getter, ...) A parameter that depends on the genre of data array.
JaggedArrayProperty(fget, ...) ArrayProperty for storing intentionally jagged arrays

of data.

tesliper.glassware.array_base.longest_subsequences(sequences: Sequence[Union[Any,
Sequence[Union[Any, NestedSequence]]]])→
Tuple[int, ...]

Finds lengths of longest subsequences on each level of given nested sequence. Each subsequence should have
same number of nesting levels.

Parameters sequences (sequence [of sequences [of...]]) – Arbitrarily deep, nested se-
quence of sequences.

Returns Length of the longest subsequence for each nesting level as a tuple.

Return type tuple of ints

3.8. tesliper 91

tesliper, Release 0.9.3

Notes

If nesting level in not identical in all subsequences, lengths are reported up to first level of non-iterable elements.

>>> longest_subsequences([[[1, 2]], [[1], 2]])
(2,)

Examples

>>> longest_subsequences([[[1, 2]], [[1]]])
(1, 2)
>>> longest_subsequences([[[1, 2]], [[1], [1], [1]]])
(3, 2)

tesliper.glassware.array_base.find_best_shape(jagged: Sequence[Union[Any, Sequence[Union[Any,
NestedSequence]]]])→ Tuple[int, ...]

Find shape of an array, that could fit arbitrarily deep, jagged, nested sequence of sequences. Reported size for
each level of nesting is the length of the longest subsequence on this level.

Parameters jagged (sequence [of sequences [of...]]) – Arbitrarily deep, nested sequence
of sequences.

Returns Length of the longest subsequence for each nesting level as a tuple.

Return type tuple of ints

Notes

If nesting level in not identical in all subsequences, size is reported up to first level of non-iterable elements.

>>> find_best_shape([[[1, 2]], [[1], 2]])
(2, 2)

Examples

>>> find_best_shape([[[1, 2]], [[1]]])
(2, 1, 2)
>>> find_best_shape([[[1, 2]], [[1], [1], [1]]])
(2, 3, 2)

tesliper.glassware.array_base.flatten(items: Sequence[Union[Any, Sequence[Union[Any,
NestedSequence]]]], depth: Optional[int] = None)→ Iterator

Yield items from any nested iterable as chain of values up to given depth. If depth is None, yielded sequence is
completely flat.

Parameters

• items (NestedSequence) – Arbitrarily deep, nested sequence of sequences.

• depth (int, optional) – How deep should fattening be.

Yields Any – Values from items as flatted sequence.

92 Chapter 3. References

tesliper, Release 0.9.3

tesliper.glassware.array_base.mask(jagged: Sequence[Union[Any, Sequence[Union[Any,
NestedSequence]]]])→ numpy.ndarray

Returns a numpy.array of booleans, of shape that best fits given jagged nested sequence jagged. Each boolean
value of the output indicates if corresponding value exists in jagged.

Parameters jagged (sequence [of sequences [of...]]) – Arbitrarily deep, nested sequence
of sequences.

Returns Array of booleans, of shape that best fits jagged, indicating if value of same index exist in
jagged.

Return type numpy.array of bool

Notes

To use output as a mask of numpy.ma.masked_array, it should be inverted. >>> np.ma.array(values,
mask=~mask(jagged))

Examples

>>> mask([[1, 2], [1]])
array([[True, True], [True, False]])
>>> mask([[1, 2], []])
array([[True, True], [False, False]])
>>> mask([[[1], []], [[2, 3]]])
array([[[True, False], [False, False]], [[True, True], [False, False]]])

tesliper.glassware.array_base.to_masked(jagged: Sequence[Union[Any, Sequence[Union[Any,
NestedSequence]]]], dtype: Optional[type] = None, fill_value:
Optional[Any] = None)→ numpy.ma.core.MaskedArray

Convert jagged, arbitrarily deep, nested sequence to numpy.ma.masked_array with missing entries masked.

Parameters

• jagged (sequence [of sequences [of...]]) – Arbitrarily deep, nested sequence of
sequences.

• dtype (type, optional) – Data type of the output. If dtype is None, the type of the data
is figured out by numpy machinery.

• fill_value (scalar, optional) – Value used to fill in the masked values when neces-
sary. If None, a default based on the data-type is used.

Returns Given jagged converted to numpy.ma.masked_array with missing entries masked.

Return type numpy.ma.core.MaskedArray

Raises ValueError – If jagged sequence has inconsistent number of dimensions.

3.8. tesliper 93

tesliper, Release 0.9.3

Examples

>>> to_masked([[1, 2], [1]])
array(data=[[1, 2], [1, --]], mask=[[True, True], [True, False]])
>>> to_masked([1, [1]])
Traceback (most recent call last):
ValueError: Cannot convert to masked array: jagged sequence has inconsistent
number of dimensions.

class tesliper.glassware.array_base.ArrayProperty(fget: typing.Optional[typing.Callable[[typing.Any],
numpy.ndarray]] = None, fset:
typing.Optional[typing.Callable[[typing.Any,
typing.Sequence], None]] = None, fdel:
typing.Optional[typing.Callable[[typing.Any],
None]] = None, doc: typing.Optional[str] = None,
dtype: type = <class 'float'>, check_against:
typing.Optional[str] = None, check_depth: int = 1,
fill_value: typing.Any = 0, fsan: typ-
ing.Optional[typing.Callable[[typing.Sequence],
typing.Sequence]] = None)

Property, that validates array-like value given to its setter and stores it as numpy.ndarray.

Value given to property setter is:

1. (optionally) sanitized with user-provided sanitizer function;

2. (optionally) compared with another array-like attribute of the owner regarding their shape;

3. transformed to numpy.ndarray of desired data type;

4. stored in owner’s __dict__.

Setting, getting and deletition of the value may be customized using standard setter, getter and deleter
decorators. Additionally, ArrayProperty provides an ArrayProperty.sanitizer decorator. If sanitizer
function is provided, it is called as a first step of data validation and should return sanitized array-like value
(given original value as a positional parameter).

Validation regarding shape of the value is triggered if check_against parameter is provided. It should be a name
of owner’s other array-like attribute as a string. Shape of the value is than compared to the shape of this reference
attribute. If shapes are not identical up to the first check_depth dimensions, InconsistentDataError is raised.

Value is always transformed to numpy.ndarray of specified dtype (float by default.) If such conversion cannot
be done because value is a jagged array, InconsistentDataError will be raised. However, if owner allows
for data inconsistency by defining owner.allow_data_inconsistency = True, non-matching shapes will
be ignored and jugged arrays will be padded with fill_value and stored as numpy.ma.masked_array.

Parameters

• fget – Custom getter for attribute. Default one just returns the stored value.

• fset – Custom setter for attribute. Default one stores validated values in instance’s
__dict__.

• fdel – Custom deleter for attribute. Deleting attribute is not supported by default.

• doc – Attribute’s docstring.

• dtype – Data type of elements of this array-like attribute.

94 Chapter 3. References

tesliper, Release 0.9.3

• check_against – Which other instance’s attribute should be used as a reference for array’s
shape. If shape of this attribute and reference attribute’s are different, an exception is raised.
Only first check_depth dimensions are compared.

• check_depth – How many dimensions should be compared when checking shape of the
array.

• fill_value – If values are a jagged array and instance.allow_data_inconsistency
is True, this value will be passed to numpy.ma.masked_array constructor as a fill_value.

• fsan – Custom sanitizer for attribute. “Sanitizer” is here understood as a function that trans-
forms value received by the setter, before the value is validated (checked for corectness) and
stored on the instance. fsan should return a sanitized value.

getter(fget: Optional[Callable[[Any], Sequence]])
Descriptor to change the getter on an ArrayProperty.

setter(fset: Optional[Callable[[Any, Sequence], None]])
Descriptor to change the setter on an ArrayProperty.

deleter(fdel: Optional[Callable[[Any], None]])
Descriptor to change the deleter on an ArrayProperty.

sanitizer(fsan: Optional[Callable[[Sequence], Sequence]])
Descriptor to change the sanitizer on an ArrayProperty. Function given as parameter should take one
positional argument and return sanitized values. If any sanitizer is provided, it is always called with values
given to ArrayProperty setter. Sanitation is performed before .check_input() is called.

check_shape(instance: Any, values: Sequence)
Raises an error if values have different shape than attribute specified as check_against.

check_input(instance: Any, values: Sequence)→ numpy.ndarray
Checks if values given to setter have same length as attribute specified with check_against.

Parameters

• instance – Instance of owner class.

• values – Values to validate.

Returns Validated values.

Return type numpy.ndarray

Raises

• ValueError – If check_against is not None and list of given values have different length
than getattr(instance, check_against). If given list of values cannot be converted to
dtype type.

• InconsistentDataError – If values is list of lists of varying size and instance doesn’t
allow data inconsistency.

3.8. tesliper 95

tesliper, Release 0.9.3

class tesliper.glassware.array_base.JaggedArrayProperty(fget: typ-
ing.Optional[typing.Callable[[typing.Any],
numpy.ndarray]] = None, fset: typ-
ing.Optional[typing.Callable[[typing.Any,
typing.Sequence], None]] = None, fdel:
typ-
ing.Optional[typing.Callable[[typing.Any],
None]] = None, doc: typing.Optional[str]
= None, dtype: type = <class 'float'>,
check_against: typing.Optional[str] =
None, check_depth:
int = 1, fill_value: typing.Any = 0, fsan: typ-
ing.Optional[typing.Callable[[typing.Sequence],
typing.Sequence]] = None)

ArrayProperty for storing intentionally jagged arrays of data. InconsistentDataError is only raised if
ArrayProperty.check_shape() fails. Given values are converted to masked array and expanded as needed,
regardless value of allow_data_inconsistency attribute.

Parameters

• fget – Custom getter for attribute. Default one just returns the stored value.

• fset – Custom setter for attribute. Default one stores validated values in instance’s
__dict__.

• fdel – Custom deleter for attribute. Deleting attribute is not supported by default.

• doc – Attribute’s docstring.

• dtype – Data type of elements of this array-like attribute.

• check_against – Which other instance’s attribute should be used as a reference for array’s
shape. If shape of this attribute and reference attribute’s are different, an exception is raised.
Only first check_depth dimensions are compared.

• check_depth – How many dimensions should be compared when checking shape of the
array.

• fill_value – If values are a jagged array and instance.allow_data_inconsistency
is True, this value will be passed to numpy.ma.masked_array constructor as a fill_value.

• fsan – Custom sanitizer for attribute. “Sanitizer” is here understood as a function that trans-
forms value received by the setter, before the value is validated (checked for corectness) and
stored on the instance. fsan should return a sanitized value.

check_input(instance: Any, values: Sequence)→ numpy.ndarray
Checks if values given to setter have same length as attribute specified with check_against.

Parameters

• instance – Instance of owner class.

• values – Values to validate.

Returns Validated values.

Return type numpy.ndarray

Raises

96 Chapter 3. References

tesliper, Release 0.9.3

• ValueError – If check_against is not None and list of given values have different length
than getattr(instance, check_against). If given list of values cannot be converted to
dtype type.

• InconsistentDataError – If values is list of lists of varying size and instance doesn’t
allow data inconsistency.

check_shape(instance: Any, values: Sequence)
Raises an error if values have different shape than attribute specified as check_against.

deleter(fdel: Optional[Callable[[Any], None]])
Descriptor to change the deleter on an ArrayProperty.

getter(fget: Optional[Callable[[Any], Sequence]])
Descriptor to change the getter on an ArrayProperty.

sanitizer(fsan: Optional[Callable[[Sequence], Sequence]])
Descriptor to change the sanitizer on an ArrayProperty. Function given as parameter should take one
positional argument and return sanitized values. If any sanitizer is provided, it is always called with values
given to ArrayProperty setter. Sanitation is performed before .check_input() is called.

setter(fset: Optional[Callable[[Any, Sequence], None]])
Descriptor to change the setter on an ArrayProperty.

class tesliper.glassware.array_base.CollapsibleArrayProperty(fget: typ-
ing.Optional[typing.Callable[[typing.Any],
numpy.ndarray]] = None, fset: typ-
ing.Optional[typing.Callable[[typing.Any,
typing.Sequence], None]] = None,
fdel: typ-
ing.Optional[typing.Callable[[typing.Any],
None]] = None, doc:
typing.Optional[str] = None, dtype:
type = <class 'float'>,
check_against: typing.Optional[str]
= None, check_depth: int = 1,
fill_value: typing.Any = 0, fsan: typ-
ing.Optional[typing.Callable[[typing.Sequence],
typing.Sequence]] = None, strict:
bool = False)

ArrayProperty that stores only one value, if all entries are identical.

Parameters

• fget – Custom getter for attribute. Default one just returns the stored value.

• fset – Custom setter for attribute. Default one stores validated values in instance’s
__dict__.

• fdel – Custom deleter for attribute. Deleting attribute is not supported by default.

• doc – Attribute’s docstring.

• dtype – Data type of elements of this array-like attribute.

• check_against – Which other instance’s attribute should be used as a reference for array’s
shape. If shape of this attribute and reference attribute’s are different, an exception is raised.
Only first check_depth dimensions are compared.

3.8. tesliper 97

tesliper, Release 0.9.3

• check_depth – How many dimensions should be compared when checking shape of the
array.

• fill_value – If values are a jagged array and instance.allow_data_inconsistency
is True, this value will be passed to numpy.ma.masked_array constructor as a fill_value.

• fsan – Custom sanitizer for attribute. “Sanitizer” is here understood as a function that trans-
forms value received by the setter, before the value is validated (checked for corectness) and
stored on the instance. fsan should return a sanitized value.

• strict – Boolean flag indicating if check_input() should disallow values that are not all
identical. If strict is True it will raise InconsistentDataError when setter is given such
values. Defaults to False.

check_shape(instance: Any, values: Sequence)
Raises an error if values have different shape than attribute specified as check_against. Accepts values
with size of first dimension equal to 1, even if it is not identical to the size of the first dimension of said
attribute.

check_input(instance: Any, values: Union[Sequence, Any])→ numpy.ndarray
If given values is not iterable or is of type str it is returned without change. Otherwise it is validated using
ArrayProperty.check_input(), and collapsed to single value if all values are identical. If values are
non-uniform and instance doesn’t allow data inconsistency, InconsistentDataError is raised.

Parameters

• instance – Instance of owner class.

• values – Values to validate.

Returns Validated array or single value.

Return type numpy.ndarray or any

Raises

• ValueError – If ArrayProperty.check_against is not None and list of given values
have different length than getattr(instance, ArrayProperty.check_against). If given
list of values cannot be converted to ArrayProperty.dtype type.

• InconsistentDataError – If values is list of lists of varying size and instance doesn’t
allow data inconsistency. If property is declared as strict, given values are non-uniform and
instance doesn’t allow data inconsistency.

deleter(fdel: Optional[Callable[[Any], None]])
Descriptor to change the deleter on an ArrayProperty.

getter(fget: Optional[Callable[[Any], Sequence]])
Descriptor to change the getter on an ArrayProperty.

sanitizer(fsan: Optional[Callable[[Sequence], Sequence]])
Descriptor to change the sanitizer on an ArrayProperty. Function given as parameter should take one
positional argument and return sanitized values. If any sanitizer is provided, it is always called with values
given to ArrayProperty setter. Sanitation is performed before .check_input() is called.

setter(fset: Optional[Callable[[Any, Sequence], None]])
Descriptor to change the setter on an ArrayProperty.

class tesliper.glassware.array_base.ArrayBase(genre: str, filenames: Sequence[str], values: Sequence,
allow_data_inconsistency: bool = False)

98 Chapter 3. References

tesliper, Release 0.9.3

Base class for data holding objects.

It provides an automatic registration of its subclasses as a DataArray-like representations of all
associated_genres declared by said subclass. A subclass should provide an associated_genres class
attribute, even if it’s not supposed to be directly instantiated with data for any genre, it should be an empty tuple
in such case. Otherwise, associated_genres should be a tuple of genre names as strings.

This base class provides the most basic set of attributes, a DataArray-like object should implement, listed in
the Parameters section.

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values – Sequence of values for genre for each conformer in filenames.

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayProperty for details).

abstract property associated_genres

Genres associated with subclassing class.

Should be provided by subclass as class-level attribute. It will be used to determine what class to use to
represent data of particular genre when requested via Conforemrs.arrayed() method. May be an empty
sequence, if subclass is not intended to be used directly by tesliper’s machinery.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

class tesliper.glassware.array_base.DependentParameter(name: str, kind: inspect._ParameterKind,
genre_getter: Callable[[str], str], *, default:
Any, annotation: Any)

A parameter that depends on the genre of data array. It provies a _genre_getter callable attribute that is used
to provide a name of data genre that should be used for this parameter.

It is hashable as the original inspect.Parameter, however it must be remembered that Python hashes functions
based on their identity.

property genre_getter

Should be a function that given a genre of data array being instantiated, returns a genre that should be used
for this parameter.

classmethod from_parameter(parameter: inspect.Parameter, genre_getter: Callable[[str], str])
Casts given inspect.Parameter instance to this class.

empty

alias of inspect._empty

replace(*, name=<class 'inspect._void'>, kind=<class 'inspect._void'>, genre_getter=<class
'inspect._void'>, annotation=<class 'inspect._void'>, default=<class 'inspect._void'>)

Creates a customized copy of the DependentParameter.

3.8. tesliper 99

tesliper, Release 0.9.3

tesliper.glassware.arrays

Implements DataArray-like objects for handling arrayed data.

DataArray-like objects are concrete implementations of ArrayBase base class that collect specific data for multiple
conformers and provide an easy access to genre-specific functionality. Instances of DataArray subclasses are produced
by the Conformers.arrayed() method and Tesliper’s subscription mechanism.

Classes

Averagable() Mix-in for DataArray subclasses, that may be averaged
based on populations of conformers.

Bands(genre, filenames, values[, ...]) Special kind of data array for band values, to which spec-
tral data or activities corespond.

BooleanArray(genre, filenames, values[, ...]) For handling data of bool type.
DataArray(genre, filenames, values[, ...]) Base class for data holding objects.
ElectronicActivities(genre, filenames, ...) For handling electronic spectral activity data.
ElectronicData(genre, filenames, values, wavelen) For handling electronic data that is not a spectral activity.
Energies(genre, filenames, values[, t, ...]) For handling data about the energy of conformers.
FilenamesArray([genre, filenames, values, ...]) Special case of DataArray, holds only filenames.
FloatArray(genre, filenames, values[, ...]) For handling data of float type.
Geometry(genre, filenames, values, atoms[, ...]) For handling information about geometry of conformers.
InfoArray(genre, filenames, values[, ...]) For handling data of str type.
IntegerArray(genre, filenames, values[, ...]) For handling data of int type.
ScatteringActivities(genre, filenames, ...) For handling scattering spectral activity data.
ScatteringData(genre, filenames, values, freq) For handling scattering data that is not a spectral activity.
SpectralActivities(genre, filenames, values) Base class for spectral activities genres.
SpectralData(genre, filenames, values[, ...]) Base class for spectral data genres, that are not spectral

activities.
Transitions(genre, filenames, values[, ...]) For handling information about electronic transitions

from ground to excited state contributing to each band.
VibrationalActivities(genre, filenames, ...) For handling electronic spectral activity data.
VibrationalData(genre, filenames, values, freq) For handling vibrational data that is not a spectral activ-

ity.

class tesliper.glassware.arrays.DataArray(genre: str, filenames: Sequence[str], values: Sequence,
allow_data_inconsistency: bool = False)

Base class for data holding objects.

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values – Sequence of values for genre for each conformer in filenames.

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayProperty for details).

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

100 Chapter 3. References

tesliper, Release 0.9.3

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

class tesliper.glassware.arrays.IntegerArray(genre: str, filenames: Sequence[str], values: Sequence,
allow_data_inconsistency: bool = False)

For handling data of int type.

Table 19: Genres associated with this class:
charge multiplicity

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values – Sequence of values for genre for each conformer in filenames.

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayProperty for details).

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

class tesliper.glassware.arrays.FloatArray(genre: str, filenames: Sequence[str], values: Sequence,
allow_data_inconsistency: bool = False)

For handling data of float type.

Table 20: Genres associated with this class:
zpecorr tencorr entcorr gibcorr

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values – Sequence of values for genre for each conformer in filenames.

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayProperty for details).

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

class tesliper.glassware.arrays.InfoArray(genre: str, filenames: Sequence[str], values: Sequence,
allow_data_inconsistency: bool = False)

For handling data of str type.

Table 21: Genres associated with this class:
command stoichiometry

3.8. tesliper 101

tesliper, Release 0.9.3

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values – Sequence of values for genre for each conformer in filenames.

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayProperty for details).

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

class tesliper.glassware.arrays.FilenamesArray(genre: str = 'filenames', filenames: Union[Sequence,
numpy.ndarray] = (), values: Optional[Any] = None,
allow_data_inconsistency: bool = False)

Special case of DataArray, holds only filenames. values property returns same as filenames and ignores any
value given to its setter. Only genre associated with this class is filenames pseudo-genre.

Parameters

• genre (str) – Name of genre, should be ‘filenames’.

• filenames (numpy.ndarray(dtype=str)) – List of filenames of gaussian output files,
from which data were extracted.

• values (numpy.ndarray(dtype=str)) – Always returns same as filenames.

property values

Property, that validates array-like value given to its setter and stores it as numpy.ndarray.

Value given to property setter is:

1. (optionally) sanitized with user-provided sanitizer function;

2. (optionally) compared with another array-like attribute of the owner regarding their shape;

3. transformed to numpy.ndarray of desired data type;

4. stored in owner’s __dict__.

Setting, getting and deletition of the value may be customized using standard setter, getter and
deleter decorators. Additionally, ArrayProperty provides an ArrayProperty.sanitizer decora-
tor. If sanitizer function is provided, it is called as a first step of data validation and should return sanitized
array-like value (given original value as a positional parameter).

Validation regarding shape of the value is triggered if check_against parameter is provided. It should
be a name of owner’s other array-like attribute as a string. Shape of the value is than compared to
the shape of this reference attribute. If shapes are not identical up to the first check_depth dimensions,
InconsistentDataError is raised.

Value is always transformed to numpy.ndarray of specified dtype (float by default.) If such conver-
sion cannot be done because value is a jagged array, InconsistentDataError will be raised. However,
if owner allows for data inconsistency by defining owner.allow_data_inconsistency = True, non-
matching shapes will be ignored and jugged arrays will be padded with fill_value and stored as numpy.ma.
masked_array.

102 Chapter 3. References

tesliper, Release 0.9.3

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

class tesliper.glassware.arrays.BooleanArray(genre: str, filenames: Sequence[str], values: Sequence,
allow_data_inconsistency: bool = False)

For handling data of bool type.

Table 22: Genres associated with this class:
normal_termination optimization_completed

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values – Sequence of values for genre for each conformer in filenames.

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayProperty for details).

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

class tesliper.glassware.arrays.Energies(genre, filenames, values, t=298.15,
allow_data_inconsistency=False)

For handling data about the energy of conformers.

Table 23: Genres associated with this class:
scf zpe ten ent gib

Parameters

• genre (str) – genre of energy.

• filenames (numpy.ndarray(dtype=str)) – List of filenames of gaussian output files,
from which data were extracted.

• values (numpy.ndarray(dtype=float)) – Energy value for each conformer.

• t (int or float) – Temperature of calculated state in K.

property as_kcal_per_mol

Energy values converted to kcal/mol.

property deltas

Calculates energy difference between each conformer and lowest energy conformer. Converts energy to
kcal/mol.

Returns List of energy differences from lowest energy in kcal/mol.

Return type numpy.ndarray

3.8. tesliper 103

tesliper, Release 0.9.3

property min_factors

Calculates list of conformers’ Boltzmann factors respective to lowest energy conformer in system.

Notes

Boltzmann factor of two states is defined as: F(state_1)/F(state_2) = exp((E_1 - E_2)/kt) where E_1 and
E_2 are energies of states 1 and 2, k is Boltzmann constant, k = 0.0019872041 kcal/(mol*K), and t is
temperature of the system.

Returns List of conformers’ Boltzmann factors respective to lowest energy conformer.

Return type numpy.ndarary

property populations

Calculates Boltzmann distribution of conformers.

Returns List of conformers populations calculated as Boltzmann distribution.

Return type numpy.ndarary

calculate_populations(t)
Calculates conformers’ Boltzmann distribution in given temperature.

Parameters t (int or float) – Temperature of calculated state in K.

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

class tesliper.glassware.arrays.Averagable

Mix-in for DataArray subclasses, that may be averaged based on populations of conformers.

average_conformers(energies)→ tesliper.glassware.arrays.DataArray
A method for averaging values by population of conformers.

Parameters energies (Energies or iterable) – Object with populations and genre at-
tributes, containing respectively: list of populations values as numpy.ndarray and string spec-
ifying energy type. Alternatively, list of weights for each conformer.

Returns New instance of DataArray’s subclass, on which average method was called, containing
averaged values.

Return type DataArray

Raises TypeError – If creation of an instance based on its __init__ signature is impossible.

class tesliper.glassware.arrays.Bands(genre: str, filenames: Sequence[str], values: Sequence,
allow_data_inconsistency: bool = False)

Special kind of data array for band values, to which spectral data or activities corespond. Provides an easy way
to convert values between their different representations: frequency, wavelength, and excitation energy.

Table 24: Genres associated with this class:
freq wavelen ex_en

Parameters

• genre – Name of the data genre that values represent.

104 Chapter 3. References

tesliper, Release 0.9.3

• filenames – Sequence of conformers’ identifiers.

• values – Sequence of values for genre for each conformer in filenames.

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayProperty for details).

property freq

Values converted to frequencies in cm−1.

property frequencies

Values converted to frequencies in cm−1. A convenience alias for Bands.frequencies.

property wavelen

Values converted to wavelengths in nm.

property wavelengths

Values converted to wavelengths in nm. A convenience alias for Bands.wavelen.

property ex_en

Values converted to excitation energy in eV.

property excitation_energy

Values converted to excitation energy in eV. A convenience alias for Bands.ex_en.

property imaginary

Finds number of imaginary frequencies of each conformer.

Returns Number of imaginary frequencies of each conformer.

Return type numpy.ndarray

find_imaginary()

Reports number of imaginary frequencies of each conformer that has any.

Returns Dictionary of {filename: number-of-imaginary-frequencies} for each conformer with at
least one imaginary frequency.

Return type dict

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

class tesliper.glassware.arrays.SpectralData(genre: str, filenames: Sequence[str], values: Sequence,
allow_data_inconsistency: bool = False)

Base class for spectral data genres, that are not spectral activities.

When subclassed, one of the attributes: freq or wavelen should be overridden with a concrete setter and getter
- use of ArrayProperty is recommended. The other one may use implementation from this base class by call
to super().freq or super().wavelen to get converted values.

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values – Sequence of values for genre for each conformer in filenames.

3.8. tesliper 105

tesliper, Release 0.9.3

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayProperty for details).

abstract property spectra_type

Type of spectra, that genres associated with SpectralData’s subclass relate to. Should be a class-level
attribute with value of either “vibrational”, “electronic”, or “scattering”.

abstract property freq

Bands values converted to frequencies in cm−1. If wavelen is provided, this may be overridden with a
simple call to super():

@property
def freq(self):

return super().freq() # values converted to cm^(-1)

property frequencies

Bands values converted to frequencies in cm−1. A convenience alias for freq.

abstract property wavelen

Bands values converted to wavelengths in nm. If freq is provided, this may be overridden with a simple
call to super():

@property
def wavelen(self):

return super().wavelen() # values converted to nm

property wavelengths

Bands values converted to wavelengths in nm. A convenience alias for wavelen.

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

class tesliper.glassware.arrays.VibrationalData(genre, filenames, values, freq,
allow_data_inconsistency=False)

For handling vibrational data that is not a spectral activity.

Table 25: Genres associated with this class:
mass frc emang

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values – Sequence of values for genre for each conformer in filenames.

• freq – Frequency for each value in each conformer in cm−1 units.

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayPropety for details).

106 Chapter 3. References

tesliper, Release 0.9.3

property spectra_type

Type of spectra, that genres associated with SpectralData’s subclass relate to. Should be a class-level
attribute with value of either “vibrational”, “electronic”, or “scattering”.

property frequencies

Bands values converted to frequencies in cm−1. A convenience alias for freq.

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

property wavelen

Bands values converted to wavelengths in nm.

property wavelengths

Bands values converted to wavelengths in nm. A convenience alias for wavelen.

class tesliper.glassware.arrays.ScatteringData(genre, filenames, values, freq, t=298.15, laser=532,
allow_data_inconsistency=False)

For handling scattering data that is not a spectral activity.

Table 26: Genres associated with this class:
depolarp depolaru depp depu alpha2
beta2 alphag gamma2 delta2 cid1
cid2 cid3 rc180

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values – Sequence of values for genre for each conformer in filenames.

• freq – Frequency for each value in each conformer in cm−1 units.

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayPropety for details).

property spectra_type

Type of spectra, that genres associated with SpectralData’s subclass relate to. Should be a class-level
attribute with value of either “vibrational”, “electronic”, or “scattering”.

property frequencies

Bands values converted to frequencies in cm−1. A convenience alias for freq.

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

property wavelen

Bands values converted to wavelengths in nm.

3.8. tesliper 107

tesliper, Release 0.9.3

property wavelengths

Bands values converted to wavelengths in nm. A convenience alias for wavelen.

class tesliper.glassware.arrays.ElectronicData(genre, filenames, values, wavelen,
allow_data_inconsistency=False)

For handling electronic data that is not a spectral activity.

Table 27: Genres associated with this class:
eemang

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values – Sequence of values for genre for each conformer in filenames.

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayProperty for details).

property spectra_type

Type of spectra, that genres associated with SpectralData’s subclass relate to. Should be a class-level
attribute with value of either “vibrational”, “electronic”, or “scattering”.

property freq

Bands values converted to frequencies in cm−1. If wavelen is provided, this may be overridden with a
simple call to super():

@property
def freq(self):

return super().freq() # values converted to cm^(-1)

property frequencies

Bands values converted to frequencies in cm−1. A convenience alias for freq.

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

property wavelengths

Bands values converted to wavelengths in nm. A convenience alias for wavelen.

class tesliper.glassware.arrays.SpectralActivities(genre: str, filenames: Sequence[str], values:
Sequence, allow_data_inconsistency: bool =
False)

Base class for spectral activities genres.

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values – Sequence of values for genre for each conformer in filenames.

108 Chapter 3. References

tesliper, Release 0.9.3

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayProperty for details).

property intensities

Converts spectral activity calculated by quantum chemistry software to signal intensity.

Returns Signal intensities for each conformer.

Return type numpy.ndarray

Raises NotImplementedError – if genre does not provide values conversion to intensities.

average_conformers(energies)→ tesliper.glassware.arrays.DataArray
A method for averaging values by population of conformers.

Parameters energies (Energies or iterable) – Object with populations and genre at-
tributes, containing respectively: list of populations values as numpy.ndarray and string spec-
ifying energy type. Alternatively, list of weights for each conformer.

Returns New instance of DataArray’s subclass, on which average method was called, containing
averaged values.

Return type DataArray

Raises TypeError – If creation of an instance based on its __init__ signature is impossible.

abstract property freq

Bands values converted to frequencies in cm−1. If wavelen is provided, this may be overridden with a
simple call to super():

@property
def freq(self):

return super().freq() # values converted to cm^(-1)

property frequencies

Bands values converted to frequencies in cm−1. A convenience alias for freq.

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

abstract property spectra_type

Type of spectra, that genres associated with SpectralData’s subclass relate to. Should be a class-level
attribute with value of either “vibrational”, “electronic”, or “scattering”.

abstract property wavelen

Bands values converted to wavelengths in nm. If freq is provided, this may be overridden with a simple
call to super():

@property
def wavelen(self):

return super().wavelen() # values converted to nm

property wavelengths

Bands values converted to wavelengths in nm. A convenience alias for wavelen.

3.8. tesliper 109

tesliper, Release 0.9.3

class tesliper.glassware.arrays.VibrationalActivities(genre, filenames, values, freq,
allow_data_inconsistency=False)

For handling electronic spectral activity data.

Table 28: Genres associated with this class:
iri dip rot

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values – Sequence of values for genre for each conformer in filenames.

• freq – Frequency for each value in each conformer in cm−1 units.

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayPropety for details).

average_conformers(energies)→ tesliper.glassware.arrays.DataArray
A method for averaging values by population of conformers.

Parameters energies (Energies or iterable) – Object with populations and genre at-
tributes, containing respectively: list of populations values as numpy.ndarray and string spec-
ifying energy type. Alternatively, list of weights for each conformer.

Returns New instance of DataArray’s subclass, on which average method was called, containing
averaged values.

Return type DataArray

Raises TypeError – If creation of an instance based on its __init__ signature is impossible.

calculate_spectra(start, stop, step, width, fitting)
Calculates spectrum for each individual conformer.

Parameters

• start (int or float) – Number representing start of spectral range in relevant units.

• stop (int or float) – Number representing end of spectral range in relevant units.

• step (int or float) – Number representing step of spectral range in relevant units.

• width (int or float) – Number representing half width of maximum peak height.

• fitting (function) – Function, which takes spectral data, freqs, abscissa, width as pa-
rameters and returns numpy.array of calculated, non-corrected spectrum points.

Returns Calculated spectrum.

Return type SingleSpectrum

Raises ValueError – If given start, stop, and step values would produce an empty or one-
element sequence; i.e. if start is grater than stop or if start - stop < step, assuming
step is a positive value.

property frequencies

Bands values converted to frequencies in cm−1. A convenience alias for freq.

110 Chapter 3. References

tesliper, Release 0.9.3

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

property intensities

Converts spectral activity calculated by quantum chemistry software to signal intensity.

Returns Signal intensities for each conformer.

Return type numpy.ndarray

Raises NotImplementedError – if genre does not provide values conversion to intensities.

property spectra_type

Type of spectra, that genres associated with SpectralData’s subclass relate to. Should be a class-level
attribute with value of either “vibrational”, “electronic”, or “scattering”.

property wavelen

Bands values converted to wavelengths in nm.

property wavelengths

Bands values converted to wavelengths in nm. A convenience alias for wavelen.

class tesliper.glassware.arrays.ScatteringActivities(genre, filenames, values, freq, t=298.15,
laser=532, allow_data_inconsistency=False)

For handling scattering spectral activity data.

Table 29: Genres associated with this class:
ramanactiv ramact raman1 roa1
raman2 roa2 raman3 roa3

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values – Sequence of values for genre for each conformer in filenames.

• freq – Frequency for each value in each conformer in cm−1 units.

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayPropety for details).

property intensities

Converts spectral activity calculated by quantum chemistry software to signal intensity.

Returns Signal intensities for each conformer.

Return type numpy.ndarray

Raises NotImplementedError – if genre does not provide values conversion to intensities.

average_conformers(energies)→ tesliper.glassware.arrays.DataArray
A method for averaging values by population of conformers.

Parameters energies (Energies or iterable) – Object with populations and genre at-
tributes, containing respectively: list of populations values as numpy.ndarray and string spec-
ifying energy type. Alternatively, list of weights for each conformer.

3.8. tesliper 111

tesliper, Release 0.9.3

Returns New instance of DataArray’s subclass, on which average method was called, containing
averaged values.

Return type DataArray

Raises TypeError – If creation of an instance based on its __init__ signature is impossible.

calculate_spectra(start, stop, step, width, fitting)
Calculates spectrum for each individual conformer.

Parameters

• start (int or float) – Number representing start of spectral range in relevant units.

• stop (int or float) – Number representing end of spectral range in relevant units.

• step (int or float) – Number representing step of spectral range in relevant units.

• width (int or float) – Number representing half width of maximum peak height.

• fitting (function) – Function, which takes spectral data, freqs, abscissa, width as pa-
rameters and returns numpy.array of calculated, non-corrected spectrum points.

Returns Calculated spectrum.

Return type SingleSpectrum

Raises ValueError – If given start, stop, and step values would produce an empty or one-
element sequence; i.e. if start is grater than stop or if start - stop < step, assuming
step is a positive value.

property frequencies

Bands values converted to frequencies in cm−1. A convenience alias for freq.

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

property spectra_type

Type of spectra, that genres associated with SpectralData’s subclass relate to. Should be a class-level
attribute with value of either “vibrational”, “electronic”, or “scattering”.

property wavelen

Bands values converted to wavelengths in nm.

property wavelengths

Bands values converted to wavelengths in nm. A convenience alias for wavelen.

class tesliper.glassware.arrays.ElectronicActivities(genre, filenames, values, wavelen,
allow_data_inconsistency=False)

For handling electronic spectral activity data.

Table 30: Genres associated with this class:
vdip ldip vrot lrot vosc losc

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

112 Chapter 3. References

tesliper, Release 0.9.3

• values – Sequence of values for genre for each conformer in filenames.

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayProperty for details).

property intensities

Converts spectral activity calculated by quantum chemistry software to signal intensity.

Returns Signal intensities for each conformer.

Return type numpy.ndarray

Raises NotImplementedError – if genre does not provide values conversion to intensities.

calculate_spectra(start, stop, step, width, fitting)
Calculates spectrum for each individual conformer.

Parameters

• start (int or float) – Number representing start of spectral range in relevant units.

• stop (int or float) – Number representing end of spectral range in relevant units.

• step (int or float) – Number representing step of spectral range in relevant units.

• width (int or float) – Number representing half width of maximum peak height.

• fitting (function) – Function, which takes spectral data, freqs, abscissa, width as pa-
rameters and returns numpy.array of calculated, non-corrected spectrum points.

Returns Calculated spectrum.

Return type SingleSpectrum

Raises ValueError – If given start, stop, and step values would produce an empty or one-
element sequence; i.e. if start is grater than stop or if start - stop < step, assuming
step is a positive value.

average_conformers(energies)→ tesliper.glassware.arrays.DataArray
A method for averaging values by population of conformers.

Parameters energies (Energies or iterable) – Object with populations and genre at-
tributes, containing respectively: list of populations values as numpy.ndarray and string spec-
ifying energy type. Alternatively, list of weights for each conformer.

Returns New instance of DataArray’s subclass, on which average method was called, containing
averaged values.

Return type DataArray

Raises TypeError – If creation of an instance based on its __init__ signature is impossible.

property freq

Bands values converted to frequencies in cm−1. If wavelen is provided, this may be overridden with a
simple call to super():

@property
def freq(self):

return super().freq() # values converted to cm^(-1)

property frequencies

Bands values converted to frequencies in cm−1. A convenience alias for freq.

3.8. tesliper 113

tesliper, Release 0.9.3

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

property spectra_type

Type of spectra, that genres associated with SpectralData’s subclass relate to. Should be a class-level
attribute with value of either “vibrational”, “electronic”, or “scattering”.

property wavelengths

Bands values converted to wavelengths in nm. A convenience alias for wavelen.

class tesliper.glassware.arrays.Transitions(genre: str, filenames: Sequence[str], values:
Sequence[Sequence[Sequence[Tuple[int, int, float]]]],
allow_data_inconsistency: bool = False)

For handling information about electronic transitions from ground to excited state contributing to each band.

Data is stored in three attributes: ground , excited , and values, which are respectively: list of ground state
electronic subshells, list of excited state electronic subshells, and list of coefficients of transitions from corre-
sponding ground to excited subshell. Each of these arrays is of shape (conformers, bands, max_transitions),
where ‘max_transitions’ is a highest number of transitions contributing to single band across all bands of all
conformers.

Table 31: Genres associated with this class:
transitions

values

List of coefficients of each transition. It is a 3-dimensional of shape (conformers, bands, max_transitions).

Type numpy.ndarray(dtype=float)

ground

List of ground state electronic subshells, stored as integers assigned to them by used quantum computations
program. It is a 3-dimensional array of shape (conformers, bands, max_transitions).

Type numpy.ndarray(dtype=int)

excited

List of excited state electronic subshells, stored as integers assigned to them by used quantum computations
program. It is a 3-dimensional array of shape (conformers, bands, max_transitions).

Type numpy.ndarray(dtype=int)

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values (list of lists of lists of tuples of (int, int, float)) – Transi-
tions data (ground and excited state electronic subshell and coefficient of transition from
former to latter) for each transition of each band of each conformer.

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayPropety for details).

114 Chapter 3. References

tesliper, Release 0.9.3

static unpack_values(values: Sequence[Sequence[Sequence[Tuple[int, int, float]]]])
Unpack transitions data stored as list of tuples of (ground, excited, coefficient) to separate lists for each
information pice, keeping original dimensionality (conformers, bands, transitions).

Parameters values (list of lists of lists of tuples of (int, int, float)) –
Transitions data (ground and excited state electronic subshell and coefficient of transition
from former to latter) for each transition of each band of each conformer.

Returns

• list of lists of lists of int,

• list of lists of lists of int,

• list of lists of lists of float – Transitions data separated to lists of ground, excited, and
coefficients, for each transition of each band of each conformer.

property coefficients: numpy.ndarray

Coefficients of each transition, alias for values.

property contribution: numpy.ndarray

Contribution of each transition to given band, calculated as 2 * coef^2. To get values in percent, multiply
by 100.

property indices_highest: Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]

Indices of coefficients of highest contribution to band in form that can be used in numpy’s advanced indexing
mechanism.

property highest_contribution: Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray,
numpy.ndarray]

Electronic transitions data limited to transition of highest contribution to each band. Returns tuple with 4
arrays: ground and excited state electronic subshell, coefficient of transition from former to latter, and its
contribution, for each band of each conformer.

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter]]
Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

class tesliper.glassware.arrays.Geometry(genre: str, filenames: Sequence[str], values:
Sequence[Sequence[Sequence[float]]], atoms:
Union[Sequence[Union[int, str]],
Sequence[Sequence[Union[int, str]]]],
allow_data_inconsistency: bool = False)

For handling information about geometry of conformers.

Table 32: Genres associated with this class:
last_read_geom input_geom optimized_geom

Parameters

• genre – Name of the data genre that values represent.

• filenames – Sequence of conformers’ identifiers.

• values – List of x, y, z coordinated for each conformer, for each atom.

3.8. tesliper 115

tesliper, Release 0.9.3

• allow_data_inconsistency – Flag signalizing if instance should allow data inconsis-
tency (see ArrayPropety for details). False by default.

• atoms – List of atomic numbers representing atoms in conformer, one for each coordinate.
Should be a list of integers or list of strings, that can be interpreted as integers or symbols of
atoms. May also be a list of such lists - one list of atoms for each conformer. All those lists
should be identical in such case, otherwise InconsistentDataError is raised. Only one list of
atoms is stored in either case.

get_repr_args()→ Dict[str, Any]
Returns dictionary that can be used as keword-value pairs to instantiate identical object.

classmethod get_init_params()→ Dict[str, Union[str, inspect.Parameter,
tesliper.glassware.array_base.DependentParameter]]

Returns parameters used to instantiate this class. genre is a genre of data array that is to be instantiated.

tesliper.glassware.conformers

A tesliper’s main data storage.

Classes

Conformers(*args[, ...]) Container for data extracted from quantum chemical
software output files.

class tesliper.glassware.conformers.Conformers(*args, allow_data_inconsistency: bool = False,
temperature_of_the_system: float = 298.15, **kwargs)

Container for data extracted from quantum chemical software output files.

Data for each file is stored in the underlying OrderedDict, under the key of said file’s name. Its values are
dictionaries with genres name (as key) and appropriate data pairs. Beside this, its essential functionality is
transformation of stored data to corresponding DataArray objects with use of arrayed() method. It provides
some control over this transformation, especially in terms of including/excluding particular conformers’ data on
creation of new DataArray instance. This type of control is here called trimming. Trimming can be achieved by
use of various trim methods defined in this class or by direct changes to kept attribute. See its documentation
for more information.

primary_genres

Class attribute. Data genres considered most important, used as default when checking for conformers
completeness (see trim_incomplete() method).

Notes

Inherits from collections.OrderedDict.

Parameters

• *args – list of arguments for creation of underlying dictionary

• allow_data_inconsistency (bool, optional) – specifies if data inconsistency should
be allowed in created DataArray object instances, defaults to False

• temperature_of_the_system (float, optional) – Temperature of the system in
Kelvin units, must be zero or higher. Defaults to room temperature = 298.15 K.

116 Chapter 3. References

tesliper, Release 0.9.3

• **kwargs – list of arbitrary keyword arguments for creation of underlying dictionary

property temperature: float

Temperature of the system expressed in Kelvin units.

Value of this parameter is passed to data arrays created with the arrayed() method, provided that the
target data array class supports a parameter named t in it’s constructor.

New in version 0.9.1.

Raises ValueError – if set to a value lower than zero.

clear()

Remove all items from the Conformers instance.

popitem(last=True)
Remove and return a (key, value) pair from the dictionary.

Pairs are returned in LIFO order if last is true or FIFO order if false.

move_to_end(key, last=True)
Move an existing element to the end (or beginning if last==False).

Raises KeyError if the element does not exist.

copy()→ a shallow copy of conformers

property kept

List of booleans, one for each conformer stored, defining if particular conformers data should be included
in corresponding DataArray instance, created by arrayed() method. It may be changed by use of trim
methods, by setting its value directly, or by modification of the underlying list. For the first option refer to
those methods documentation, for rest see the Examples section.

Returns List of booleans, one for each conformer stored, defining if particular conformers data
should be included in corresponding DataArray instance.

Return type list of bool

Raises

• TypeError – If assigned values is not a sequence. If elements of given sequence are not
one of types: bool, int, str.

• ValuesError – If number of given boolean values doesn’t match number of contained
conformers.

• KeyError – If any of given string values is not in underlying dictionary keys.

• IndexError – If any of given integer values is not in range 0 <= i < number of conformers.

Examples

New list of values can be set in a few ways. Firstly, it is the most straightforward to just assign a new list of
boolean values to the kept attribute. This list should have the same number of elements as the number of
conformers contained. A ValueError is raised if it doesn’t.

>>> c = Conformers(one={}, two={}, tree={})
>>> c.kept
[True, True, True]
>>> c.kept = [False, True, False]

(continues on next page)

3.8. tesliper 117

tesliper, Release 0.9.3

(continued from previous page)

>>> c.kept
[False, True, False]
>>> c.kept = [False, True, False, True]
Traceback (most recent call last):
...
ValueError: Must provide boolean value for each known conformer.
4 values provided, 3 excepted.

Secondly, list of filenames of conformers intended to be kept may be given. Only these conformers will be
kept. If given filename is not in the underlying Conformers’ dictionary, KeyError is raised.

>>> c.kept = ['one']
>>> c.kept
[True, False, False]
>>> c.kept = ['two', 'other']
Traceback (most recent call last):
...
KeyError: Unknown conformers: other.

Thirdly, list of integers representing conformers indices may be given. Only conformers with specified
indices will be kept. If one of given integers can’t be translated to conformer’s index, IndexError is raised.
Indexing with negative values is not supported currently.

>>> c.kept = [1, 2]
>>> c.kept
[False, True, True]
>>> c.kept = [2, 3]
Traceback (most recent call last):
...
IndexError: Indexes out of bounds: 3.

Fourthly, assigning True or False to this attribute will mark all conformers as kept or not kept respectively.

>>> c.kept = False
>>> c.kept
[False, False, False]
>>> c.kept = True
>>> c.kept
[True, True, True]

Lastly, list of kept values may be modified by setting its elements to True or False. It is advised against,
however, as mistake such as c.kept[:2] = [True, False, False] will break some functionality by
forcibly changing size of kept list.

118 Chapter 3. References

tesliper, Release 0.9.3

Notes

Type of the first element of given sequence is used for dynamic dispatch.

update(other=None, **kwargs)
Works like dict.update, but if key is already present, it updates dictionary associated with given key
rather than assigning new value. Keys of dictionary passed as positional parameter (or additional key-
word arguments given) should be conformers’ identifiers and its values should be dictionaries of {“genre”:
values} for those conformers.

Please note, that values of status genres like ‘optimization_completed’ and ‘normal_termination’ will be
updated as well for such key, if are present in given new values.

arrayed(genre: str, full: bool = False, strict: bool = True, **kwargs)→
Union[tesliper.glassware.arrays.DataArray, tesliper.glassware.arrays.Energies,
tesliper.glassware.arrays.FloatArray, tesliper.glassware.arrays.FilenamesArray,
tesliper.glassware.arrays.InfoArray, tesliper.glassware.arrays.BooleanArray,
tesliper.glassware.arrays.IntegerArray, tesliper.glassware.arrays.Bands,
tesliper.glassware.arrays.VibrationalData, tesliper.glassware.arrays.ScatteringData,
tesliper.glassware.arrays.ElectronicData, tesliper.glassware.arrays.VibrationalActivities,
tesliper.glassware.arrays.ScatteringActivities, tesliper.glassware.arrays.ElectronicActivities,
tesliper.glassware.arrays.Transitions, tesliper.glassware.arrays.Geometry]

Lists requested data and returns as appropriate DataArray instance.

New in version 0.9.1: The strict parameter.

Parameters

• genre – String representing data genre. Must be one of known genres.

• full – Boolean indicating if full set of data should be taken, ignoring any trimming con-
ducted earlier. Defaults to False.

• strict – Boolean indicating if additional kwargs that doesn’t match signature of data
array’s constructor should cause an exception as normally (strict = True) or be silently
ignored (strict = False). Defaults to True.

• kwargs – Additional keyword parameters passed to data array constructor. Any explicitly
given parameters will take precedence over automatically retrieved and default values.

Returns Arrayed data of desired genre as appropriate DataArray object.

Return type DataArray

Notes

For now, the special “filenames” genre always ignores kwargs.

by_index(index: int)→ dict
Returns data for conformer on desired index.

key_of(index: int)→ str
Returns name of conformer associated with given index.

index_of(key: str)→ int
Return index of given key.

3.8. tesliper 119

tesliper, Release 0.9.3

has_genre(genre: str, ignore_trimming: bool = False)→ bool
Checks if any of stored conformers contains data of given genre.

Parameters

• genre (str) – Name of genre to test.

• ignore_trimming (bool) – If all known conformers should be considered
(ignore_trimming = True) or only kept ones (ignore_trimming = False, de-
fault).

Returns Boolean value indicating if any of stored conformers contains data of genre in question.

Return type bool

has_any_genre(genres: Iterable[str], ignore_trimming: bool = False)→ bool
Checks if any of stored conformers contains data of any of given genres.

Parameters

• genres (iterable of str) – List of names of genres to test.

• ignore_trimming (bool) – If all known conformers should be considered
(ignore_trimming = True) or only kept ones (ignore_trimming = False, de-
fault).

Returns Boolean value indicating if any of stored conformers contains data of any of genres in
question.

Return type bool

all_have_genres(genres: Iterable[str], ignore_trimming: bool = False)→ bool
Checks if all stored conformers contains data of given genres.

Parameters

• genres (iterable of str) – List of names of genres to test.

• ignore_trimming (bool) – If all known conformers should be considered
(ignore_trimming = True) or only kept ones (ignore_trimming = False, de-
fault).

Returns Boolean value indicating if each stored conformers contains data of all genres in ques-
tion.

Return type bool

trim_incomplete(wanted: Optional[Iterable[str]] = None, strict: bool = False)→ None
Mark incomplete conformers as “not kept”.

Conformers that does not contain one or more data genres specified as wanted will be marked as “not kept”.
If wanted parameter is not given, it evaluates to primary_genres. If no conformer contains all wanted
genres, conformers that match the specification most closely are kept. The “closeness” is defined by number
of conformer’s genres matching wanted genres in the first place (the more, the better) and the position of
particular genre in wanted list in the second place (the closer to the beginning, the better). This “match
closest” behaviour may be turned off by setting parameter strict to True. In such case, only conformers
containing all wanted genres will be kept.

Parameters

• wanted – List of data genres used as completeness reference. If not given, evaluates to
primary_genres.

120 Chapter 3. References

tesliper, Release 0.9.3

• strict – Indicates if all wanted genres must be present in the kept conform-
ers (strict=True) or if “match closest” mechanism should be used as a fallback
(strict=False, this is the default).

Notes

Conformers previously marked as “not kept” will not be affected.

trim_imaginary_frequencies()→ None
Mark all conformers with imaginary frequencies as “not kept”.

Notes

Conformers previously marked as “not kept” will not be affected. Conformers that doesn’t contain “freq”
genre will be treated as not having imaginary frequencies.

trim_non_matching_stoichiometry(wanted: Optional[str] = None)→ None
Mark all conformers with stoichiometry other than wanted as “not kept”. If not given, wanted evaluates to
the most common stoichiometry.

Parameters wanted – Only conformers with same stoichiometry will be kept. Evaluates to the
most common stoichiometry if not given.

Notes

Conformers previously marked as “not kept” will not be affected. Conformers that doesn’t contain stoi-
chiometry data are always treated as non-matching.

trim_not_optimized()→ None
Mark all conformers that failed structure optimization as “not kept”.

Notes

Conformers previously marked as “not kept” will not be affected. Conformers that doesn’t contain opti-
mization data are always treated as optimized.

trim_non_normal_termination()→ None

Mark all conformers, which calculation job did not terminate normally, as “not kept”.

Notes

Conformers previously marked as “not kept” will not be affected. Conformers that doesn’t contain data
regarding their calculation job’s termination are always treated as terminated abnormally.

trim_inconsistent_sizes()→ None
Mark as “not kept” all conformers that contain any iterable data genre, that is of different length, than in
case of majority of conformers.

3.8. tesliper 121

tesliper, Release 0.9.3

Examples

>>> c = Conformers(
... one={'a': [1, 2, 3]},
... two={'a': [1, 2, 3]},
... three={'a': [1, 2, 3, 4]}
...)
>>> c.kept
[True, True, True]
>>> c.trim_inconsistent_sizes()
>>> c.kept
[True, True, False]

Notes

Conformers previously marked as “not kept” will not be affected.

trim_to_range(genre: str, minimum: Union[int, float] = - inf, maximum: Union[int, float] = inf, attribute:
str = 'values')→ None

Marks as “not kept” all conformers, which numeric value of data of specified genre is outside of the range
specified by minimum and maximum values.

Parameters

• genre – Name of genre that should be compared to specified minimum and maximum
values.

• minimum – Minimal accepted value - every conformer, which genre value evaluates to less
than minimum will be marked as “not kept”. Defaults to float(-inf).

• maximum – Maximal accepted value - every conformer, which genre value evaluates to
more than maximum will be marked as “not kept”. Defaults to float(inf).

• attribute – Attribute of DataArray of specified genre that contains one-dimensional ar-
ray of numeric values. defaults to “values”.

Raises

• AttributeError – If DataArray associated with genre genre has no attribute attribute.

• ValueError – If data retrieved from specified genre’s attribute is not in the form of one-
dimensional array.

• TypeError – If comparision cannot be made between elements of specified genre’s at-
tribute and minimum or maximum values.

Notes

Conformers previously marked as “not kept” will not be affected.

trim_rmsd(threshold: typing.Union[int, float], window_size: typing.Optional[typing.Union[int, float]],
geometry_genre: str = 'last_read_geom', energy_genre: str = 'scf', ignore_hydrogen: bool =
True, moving_window_strategy: typing.Callable = <function stretching_windows>)→ None

Marks as “not kept” all conformers that are identical with some other conformer, judging by a provided
RMSD threshold.

122 Chapter 3. References

tesliper, Release 0.9.3

To minimize computation cost, conformers are compared inside windows, that is a subsets of the original list
of conformers. Those windows are generated by the moving_window_strategy function. The recommended
strategy, and a default value, is streaching_windows(), but other are also available: fixed_windows()
and pyramid_windows(). This function will be called with list of energies for conformers compared and
(if it is not None) window_size parameter.

With default moving_window_strategy conformers, which energy difference (dE) is higher than given win-
dow_size are always treated as different, while those with dE smaller than window_size and RMSD value
smaller than given threshold are considered identical. From two identical conformers, the one with lower
energy is “kept”, and the other is discarded (marked as “not kept”).

Notes

RMSD threshold and size of the energy window should be chosen depending on the parameters of conform-
ers’ set: number of conformers, size of the conformer, its lability, etc. However, threshold of 0.5 angstrom
and window_size of 5 to 10 kcal/mol is a good place to start if in doubt.

Parameters

• threshold (int or float) – Maximum RMSD value to consider conformers identical.

• window_size (int or float) – Size of the energy window, in kcal/mol, inside which
RMSD matrix is calculated. Essentially, a difference in conformers’ energy, after which
conformers are always considered different.

• geometry_genre (str) – Genre of geometry used to calculate RMSD matrix.
“last_read_geom” is default.

• energy_genre (str) – Genre of energy used to sort and group conformers into windows
of given energy size. “scf” is used by default.

• ignore_hydrogen (bool) – If hydrogen atom should be discarded before RMSD calcu-
lation. Defaults to True.

• moving_window_strategy (callable) – Function that generates windows, inside which
RMSD comparisions is performed.

Raises

• InconsistentDataError – If requested genres does not provide the same set of con-
formers.

• ValueError – When called with ignore_hydrogen=True but requested Geometry.
atoms cannot be collapsed to 1-D array.

select_all()→ None
Marks all conformers as ‘kept’. Equivalent to conformers.kept = True.

reject_all()→ None
Marks all conformers as ‘not kept’. Equivalent to conformers.kept = False.

kept_keys(indices: bool = False)→ tesliper.glassware.conformers._KeptKeysView
Equivalent of dict.keys() but gives view only on conformers marked as “kept”. Returned view may also
provide information on conformers index in its Conformers instance if requested with indices=True.

>>> c = Conformers(c1={"g": 0.1}, c2={"g": 0.2}, c3={"g": 0.3}}
>>> c.kept = [True, False, True]
>>> list(c.kept_keys())
["c1", "c3"]

(continues on next page)

3.8. tesliper 123

tesliper, Release 0.9.3

(continued from previous page)

>>> list(c.kept_keys(indices=True))
[(0, "c1"}), (2, "c3")]

Parameters indices (bool) – If resulting Conformers view should also provide index of each
conformer. Defaults to False.

Returns View of kept conformers.

Return type _KeptKeysView

kept_values(indices: bool = False)→ tesliper.glassware.conformers._KeptValuesView
Equivalent of dict.values() but gives view only on conformers marked as “kept”. Returned view may
also provide information on conformers index in its Conformers instance if requested with indices=True.

>>> c = Conformers(c1={"g": 0.1}, c2={"g": 0.2}, c3={"g": 0.3}}
>>> c.kept = [True, False, True]
>>> list(c.kept_values())
[{"g": 0.1}, {"g": 0.3}]
>>> list(c.kept_values(indices=True))
[(0, {"g": 0.1}), (2, {"g": 0.3})]

Parameters indices (bool) – If resulting Conformers view should also provide index of each
conformer. Defaults to False.

Returns View of kept conformers.

Return type _KeptValuesView

fromkeys(value=None)
Create a new ordered dictionary with keys from iterable and values set to value.

get(key, default=None, /)
Return the value for key if key is in the dictionary, else default.

items()→ a set-like object providing a view on D's items

kept_items(indices: bool = False)→ tesliper.glassware.conformers._KeptItemsView
Equivalent of dict.items() but gives view only on conformers marked as “kept”. Returned view may
also provide information on conformers index in its Conformers instance if requested with indices=True.

>>> c = Conformers(c1={"g": 0.1}, c2={"g": 0.2}, c3={"g": 0.3}}
>>> c.kept = [True, False, True]
>>> list(c.kept_items())
[("c1", {"g": 0.1}), ("c3", {"g": 0.3})]
>>> list(c.kept_items(indices=True))
[(0, "c1", {"g": 0.1}), (2, "c3", {"g": 0.3})]

Parameters indices (bool) – If resulting Conformers view should also provide index of each
conformer. Defaults to False.

Returns View of kept conformers.

Return type _KeptItemsView

124 Chapter 3. References

tesliper, Release 0.9.3

keys()→ a set-like object providing a view on D's keys

pop(k[, d])→ v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError is raised.

setdefault(key, default=None)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

values()→ an object providing a view on D's values

property untrimmed: tesliper.glassware.conformers.Conformers

Temporally remove trimming. Implemented as context manager to use with python’s ‘with’ keyword.

Examples

>>> c = Conformers(one={}, two={}, tree={})
>>> c.kept = [False, True, False]
>>> with c.untrimmed:
>>> c.kept
[True, True, True]
>>> c.kept
[False, True, False]

trimmed_to(blade: Union[Sequence[bool], Sequence[str], Sequence[int], bool])→
tesliper.glassware.conformers.Conformers

Temporally set trimming blade to given one. Implemented as context manager to use with python’s ‘with’
keyword.

Parameters blade (bool or sequence of bool, str, or int) – Temporary trimming
blade. To better understand how blade setting works, see Conformers.kept documentation.

Examples

>>> c = Conformers(one={}, two={}, tree={})
>>> c.kept = [True, True, False]
>>> with c.trimmed_to([1, 2]):
>>> c.kept
[False, True, True]
>>> c.kept
[True, True, False]

property inconsistency_allowed: tesliper.glassware.conformers.Conformers

Temporally sets Conformers’ ‘allow_data_inconsistency’ attribute to true. Implemented as context manager
to use with python’s ‘with’ keyword.

3.8. tesliper 125

tesliper, Release 0.9.3

Examples

>>> c = Conformers(...)
>>> with c.inconsistency_allowed:
>>> # do stuff here while c.allow_data_inconsistency is True
>>> c.allow_data_inconsistency
True
>>> c.allow_data_inconsistency
False

tesliper.glassware.spectra

Objects representing spectra.

Classes

SingleSpectrum(genre, values, abscissa[, ...]) Represents a single spectrum: experimental, averaged
from set of conformers, or calculated for only one con-
former.

Spectra(genre, filenames, values, abscissa) Represents a collection of spectra calculated for a num-
ber of conformers.

class tesliper.glassware.spectra.SingleSpectrum(genre: str, values: Sequence[float], abscissa:
Sequence[float], width: float = 0.0, fitting: str = 'n/a',
scaling: float = 1.0, offset: float = 0.0, filenames:
Optional[Sequence[str]] = None, averaged_by:
Optional[str] = None)

Represents a single spectrum: experimental, averaged from set of conformers, or calculated for only one con-
former.

Notes

Calling len() on this class’ instance will show a number of data points in the spectrum.

Parameters

• genre (str) – Name of data genre that this object represents.

• values (Sequence[float]) – List of intensity values for each point on the x-axis.

• abscissa (Sequence[float]) – List of x-axis values.

• width (float, optional) – Full width at half maximum used to calculate spectrum, if
applies. Provided for the record only, by default 0.0.

• fitting (str, optional) – Name of the fitting function used to calculate spectrum, if
applies. Provided for the record only, by default “n/a”.

• scaling (float, optional) – Multiplyier for correction of signal intensity, by default
1.0.

• offset (float, optional) – Correction of the spectrum’s shift. Positive value indicates
a bathochromic shift, negative value indicates a hypsochromic shift. By default 0.0.

126 Chapter 3. References

tesliper, Release 0.9.3

• filenames (Optional[Sequence[str]], optional) – List of identifiers of conformers
that were used to calculate average spectrum, if applies.

• averaged_by (Optional[str], optional) – Energies genre used to calculate average
spectrum, if applies.

property spectra_type

‘vibrational’, ‘electronic’, or ‘scattering’.

Type Returns type of spectra

property units: Dict[str, str]

Units in which spectral data is stored. It provides a unit for width, start, stop, step, x, and y. abscissa
and values are stored in the same units as x and y respectively.

property scaling: Union[int, float]

A factor for correcting the scale of spectra. Setting it to new value changes the y attribute as well. It should
be an int or float.

property offset: Union[int, float]

A factor for correcting the shift of spectra. Positive value indicates a bathochromic shift, negative value
indicates a hypsochromic shift. Setting it to new value changes the x attribute as well. It should be an int
or float.

property x: numpy.ndarray

Spectra’s x-values corrected by adding its offset to abscissa.

property y: numpy.ndarray

Spectra’s y-values corrected by multiplying its values by scaling.

scale_to(spectrum: tesliper.glassware.spectra.SingleSpectrum)→ None
Establishes a scaling factor to best match a scale of the spectrum values.

Parameters spectrum (SingleSpectrum) – This spectrum’s y-axis values will be treated as a
reference. If spectrum has its own scaling factor, it will be taken into account.

shift_to(spectrum: tesliper.glassware.spectra.SingleSpectrum)→ None
Establishes an offset factor to best match given spectrum.

Parameters spectrum (SingleSpectrum) – This spectrum will be treated as a reference. If
spectrum has its own offset factor, it will be taken into account.

class tesliper.glassware.spectra.Spectra(genre: str, filenames: Sequence[str], values:
Sequence[Sequence[float]], abscissa: Sequence[float], width:
float = 0.0, fitting: str = 'n/a', scaling: float = 1.0, offset: float
= 0.0, allow_data_inconsistency: bool = False)

Represents a collection of spectra calculated for a number of conformers.

Changed in version 0.9.1: Corrected len() behavior.

3.8. tesliper 127

tesliper, Release 0.9.3

Notes

Calling len() on this class’ instance will show how many conformers’ spectra it contains.

Parameters

• genre (str) – Name of data genre that this object represents.

• filenames (Optional[Sequence[str]], optional) – List of conformers’ identifiers
that were used to calculate spectra.

• values (Sequence[float]) – List of intensity values for each point on the x-axis.

• abscissa (Sequence[float]) – List of x-axis values.

• width (float, optional) – Full width at half maximum used to calculate spectra. Pro-
vided for the record only, by default 0.0.

• fitting (str, optional) – Name of the fitting function used to calculate spectra. Pro-
vided for the record only, by default “n/a”.

• scaling (float, optional) – Multiplyier for correction of signal intensity, by default
1.0.

• offset (float, optional) – Correction of the spectra’s shift. Positive value indicates a
bathochromic shift, negative value indicates a hypsochromic shift. By default 0.0.

• allow_data_inconsistency (bool, optional) – Flag signalizing if instance should
allow data inconsistency (see ArrayPropety for details).

property offset: Union[int, float]

A factor for correcting the shift of spectra. Positive value indicates a bathochromic shift, negative value
indicates a hypsochromic shift. Setting it to new value changes the x attribute as well. It should be an int
or float.

property scaling: Union[int, float]

A factor for correcting the scale of spectra. Setting it to new value changes the y attribute as well. It should
be an int or float.

property spectra_type

‘vibrational’, ‘electronic’, or ‘scattering’.

Type Returns type of spectra

property units: Dict[str, str]

Units in which spectral data is stored. It provides a unit for width, start, stop, step, x, and y. abscissa
and values are stored in the same units as x and y respectively.

property x: numpy.ndarray

Spectra’s x-values corrected by adding its offset to abscissa.

property y: numpy.ndarray

Spectra’s y-values corrected by multiplying its values by scaling.

average(energies: tesliper.glassware.arrays.Energies)→ tesliper.glassware.spectra.SingleSpectrum
A method for averaging spectra by population of conformers. If this object is empty, averaged spectrum
will be a flat line at 0.0 intensity.

Parameters energies (Energies) – Object with populations and genre attributes contain-
ing respectively: list of populations values as numpy.ndarray and string specifying energy
genre.

128 Chapter 3. References

tesliper, Release 0.9.3

Returns Averaged spectrum.

Return type SingleSpectrum

scale_to(spectrum: tesliper.glassware.spectra.SingleSpectrum, average_by:
Optional[tesliper.glassware.arrays.Energies] = None)→ None

Establishes a scaling factor to best match a scale of the spectrum values. An average spectrum is calculated
prior to calculating the factor. If average_by is given, it is used to average by population of each conformer.
Otherwise an arithmetic average of spectra is calculated, which may lead to inaccurate results.

Parameters

• spectrum (SingleSpectrum) – This spectrum’s y-axis values will be treated as a refer-
ence. If spectrum has its own scaling factor, it will be taken into account.

• average_by (Energies, optional) – Energies object, used to calculate average spec-
trum prior to calculating the factor. If not given, a simple arithmetic average of the spectra
will be calculated.

shift_to(spectrum: tesliper.glassware.spectra.SingleSpectrum, average_by:
Optional[tesliper.glassware.arrays.Energies] = None)→ None

Establishes an offset factor to best match given spectrum. An average spectrum is calculated prior to calcu-
lating the factor. If average_by is given, it is used to average by population of each conformer. Otherwise
an arithmetic average of spectra is calculated, which may lead to inaccurate results.

Parameters

• spectrum (SingleSpectrum) – This spectrum will be treated as a reference. If spectrum
has its own offset factor, it will be taken into account.

• average_by (Energies, optional) – Energies object, used to calculate average spec-
trum prior to calculating the factor. If not given, a simple arithmetic average of the spectra
will be calculated.

3.8.5 tesliper.tesliper

Provides a facade-like interface for easy access to tesliper’s functionality.

There are some conventions that are important to note:

• tesliper stores multiple data entries of various types for each conformer. To prevent confusion with Python’s
data type and with data itself, tesliper refers to specific kinds of data as “genres”. Genres in code are repre-
sented by specific strings, used as identifiers. To learn about data genres known to tesliper, see documentation
for GaussianParser, which lists them.

• tesliper identifies conformers using stem of an extracted file (i.e. its filename without extension). When
files with identical names are extracted in course of subsequent Tesliper.extract() calls or in recursive
extraction using tesliper_object.extract(recursive=True), they are treated as data for one conformer.
This enables to join data from subsequent calculations steps, e.g. geometry optimization, vibrational spectra
simulation, and electronic spectra simulation. Please note that if specific data genre is available from more than
one calculation job, only recently extracted values will be stored.

• tesliper was designed to deal with multiple conformers of single molecule and may not work properly when
used to process data concerning different molecules (i.e. having different number of atoms, different number of
degrees of freedom, etc.). If you want to use it for such purpose anyway, you may set Tesliper.conformers.
allow_data_inconsistency to True. tesliper will then stop complaining and try to do its best.

3.8. tesliper 129

tesliper, Release 0.9.3

Classes

Tesliper([input_dir, output_dir, ...]) This class is a main access point to tesliper's func-
tionality.

class tesliper.tesliper.Tesliper(input_dir: str = '.', output_dir: str = '.', wanted_files:
Optional[Iterable[Union[str, pathlib.Path]]] = None, quantum_software:
str = 'gaussian')

This class is a main access point to tesliper’s functionality. It allows you to extract data from specified files,
provides a proxy to the trimming functionality, gives access to data in form of specialized arrays, enables you to
calculate and average desired spectra, and provides an easy way to export data.

Most basic use might look like this:

>>> tslr = Tesliper()
>>> tslr.extract()
>>> tslr.calculate_spectra()
>>> tslr.average_spectra()
>>> tslr.export_averaged()

This extracts data from files in the current working directory, calculates available spectra using standard param-
eters, averages them using available energy values, and exports to current working directory in .txt format.

You can customize this process by specifying call parameters for used methods and modifying Tesliper’s
configuration attributes:

• to change source directory or location of exported files instantiate Tesliper object with input_dir and
output_dir parameters specified, respectively. You can also set appropriate attributes on the instance
directly.

• To extract only selected files in input_dir use wanted_files init parameter. It should be given an
iterable of filenames you want to parse. Again, you can also directly set an identically named attribute.

• To change parameters used for calculation of spectra, modify appropriate entries of parameters attribute.

• Use other export methods to export more data and specify fmt parameter in method’s call to export to other
file formats.

>>> tslr = Tesliper(input_dir="./myjob/optimization/", output_dir="./myjob/output/")
>>> tslr.wanted_files = ["one", "two", "three"] # only files with this names
>>> tslr.extract() # use tslr.input_dir as source
>>> tslr.extract(path="./myjob/vcd_sim/") # use other input_dir
>>> tslr.conformers.trim_not_optimized() # trimming out unwanted conformers
>>> tslr.parameters["vcd"].update({"start": 500, "stop": 2500, "width": 2})
>>> tslr.calculate_spectra(genres=["vcd"]) # we want only VCD spectrum
>>> tslr.average_spectra()
>>> tslr.export_averaged(mode="w") # overwrite previously exported files
>>> tslr.export_activities(fmt="csv") # save activities for analysis elsewhere
>>> tslr.output_dir = "./myjob/ecd_sim/"
>>> tslr.export_job_file(# prepare files for next step of calculations
... route="# td=(singlets,nstates=80) B3LYP/Def2TZVP"
...)

When modifying Tesliper.parameters be careful to not delete any of the parameters. If you need to revert
to standard parameters values, you can find them in Tesliper.standard_parameters.

130 Chapter 3. References

tesliper, Release 0.9.3

>>> tslr.parameters["ir"] = {
... "start": 500, "stop": 2500, "width": 2
... } # this will cause problems!
>>> tslr.parameters = tslr.standard_parameters # revert to default values

Trimming functionality, used in previous example in tslr.conformers.trim_not_optimized(), allows you
to filter out conformers that shouldn’t be used in further processing and analysis. You can trim off conformers that
were not optimized, contain imaginary frequencies, or have other unwanted qualities. Conformers with similar
geometry may be discarded using an RMSD sieve. For more information about trimming, please refer to the
documentation of Conformers class.

For more exploratory analysis, Tesliper provides an easy way to access desired data as an instance of special-
ized DataArray class. Those objects implement a number of convenience methods for dealing with specific
data genres. A more detailed information on DataArray see arrays module documentation. To get data in
this form use array = tslr["genre"] were "genre" is string with the name of desired data genre. For more
control over instantiation of DataArray you may use Tesliper.conformers.arrayed factory method.

>>> energies = tslr["gib"]
>>> energies.values
array([-304.17061762, -304.17232455, -304.17186735])
>>> energies.populations
array([0.0921304 , 0.56174031, 0.3461293])
>>> energies.full_name
'Thermal Free Energy'

Please note, that if some conformers do not provide values for a specific data genre, it will be ignored when
retriving data for DataArray instantiation, regardles if it were trimmed off or not.

>>> tslr = Tesliper()
>>> tslr.conformers.update([
>>> ... ('one', {'gib': -304.17061762}),
>>> ... ('two', {'gib': -304.17232455}),
>>> ... ('three', {'gib': -304.17186735}),
>>> ... ('four', {})
>>> ...])
>>> tslr.conformers.kept
[True, True, True, True]
>>> energies = tslr["gib"]
>>> energies.filenames
array(['one', 'two', 'three'], dtype='<U5')

conformers

Container for data extracted from Gaussian output files. It provides trimming functionality, enabling to
filter out conformers of unwanted qualities.

Type Conformers

spectra

Spectra calculated so far, using calculate_spectra() method. Possible keys are spectra genres: “ir”,
“vcd”, “uv”, “ecd”, “raman”, and “roa”. Values are Spectra instances with lastly calculated spetra of this
genre.

Type dict of str: Spectra

3.8. tesliper 131

tesliper, Release 0.9.3

averaged

Spectra averaged using available energies genres, calculated with last call to average_spectra()method.
Keys are tuples of two strings: averaged spectra genre and energies genre used for averaging.

Type dict of str: (dict of str: float or callable)

experimental

Experimental spectra loaded from disk. Possible keys are spectra genres: “ir”, “vcd”, “uv”, “ecd”, “raman”,
and “roa”. Values are Spectra instances with experimental spetra of this genre.

Type dict of str: Spectra

quantum_software

A name, lower case, of the quantum chemical computations software used to obtain data. Used by
tesliper to figure out, which parser to use to extract data, if custom parsers are available. Only “gaussian”
is supported out-of-the-box.

Type str

parameters

Parameters for calculation of each spectra genres: “ir”, “vcd”, “uv”, “ecd”, “raman”, and “roa”. Avaliable
parameters are:

• “start”: float or int, the beginning of the spectral range,

• “stop”: float or int, the end of the spectral range,

• “step”: float or int, step of the abscissa,

• “width”: float or int, width of the peak,

• “fitting”: callable, function used to simulate peaks as curves, preferably one of datawork.gaussian
or datawork.lorentzian.

“start”, “stop”, and “step” expect its values to by in cm^-1 units for vibrational and scattering spectra, and
nm units for electronic spectra. “width” expects its value to be in cm^-1 units for vibrational and scattering
spectra, and eV units for electronic spectra.

Type dict of str: (dict of str: float or callable)

Parameters

• input_dir (str or path-like object, optional) – Path to directory containing
files for extraction, defaults to current working directory.

• output_dir (str or path-like object, optional) – Path to directory for output
files, defaults to current working directory.

• wanted_files (list of str or list of Path, optional) – List of files or file-
names representing wanted files. If not given, all files are considered wanted. File extensions
are ignored.

• quantum_software (str) – A name of the quantum chemical computations software used
to obtain data. Used by tesliper to figure out, which parser to use, if custom parsers are
available.

clear()

Remove all data from the instance.

132 Chapter 3. References

tesliper, Release 0.9.3

property temperature: float

Temperature of the system expressed in Kelvin units.

Value of this parameter is passed to data arrays created with the Conformers.arrayed() method, pro-
vided that the target data array class supports a parameter named t in it’s constructor.

New in version 0.9.1.

Raises ValueError – if set to a value lower than zero.

Notes

It’s actually just a proxy to self.conformers.temperatue.

property energies: Dict[str, tesliper.glassware.arrays.Energies]

Data for each energies’ genre as Energies data array. Returned dictionary is of form {“genre”: Energies}
for each of the genres: “scf”, “zpe”, “ten”, “ent”, and “gib”. If no values are available for a specific genre,
an empty Energies array is produced as corresponding dictionary value.

>>> tslr = Tesliper()
>>> tslr.energies
{

"scf": Energies(genre="scf", ...),
"zpe": Energies(genre="zpe", ...),
"ten": Energies(genre="ten", ...),
"ent": Energies(genre="ent", ...),
"gib": Energies(genre="gib", ...),

}

Returns Dictionary with genre names as keys and Energies data arrays as values.

Return type dict

property activities: Dict[str,
Union[tesliper.glassware.arrays.VibrationalActivities,
tesliper.glassware.arrays.ScatteringActivities,
tesliper.glassware.arrays.ElectronicActivities]]

Data for default activities used to calculate spectra as appropriate SpectralActivities subclass. Re-
turned dictionary is of form {“genre”: SpectralActivities} for each of the genres: “dip”, “rot”, “vosc”,
“vrot”, “raman1”, and “roa1”. If no values are available for a specific genre, an empty data array is produced
as corresponding dictionary value.

>>> tslr = Tesliper()
>>> tslr.activities
{

"dip": VibrationalActivities(genre="dip", ...),
"rot": VibrationalActivities(genre="rot", ...),
"vosc": ElectronicActivities(genre="vosc", ...),
"vrot": ElectronicActivities(genre="vrot", ...),
"raman1": ScatteringActivities(genre="raman1", ...),
"roa1": ScatteringActivities(genre="roa1", ...),

}

Returns Dictionary with genre names as keys and SpectralActivities data arrays as values.

3.8. tesliper 133

tesliper, Release 0.9.3

Return type dict

property wanted_files: Optional[Set[str]]

Set of files that are desired for data extraction, stored as filenames without an extension. Any iterable of
strings or Path objects is transformed to this form.

>>> tslr = Tesliper()
>>> tslr.wanted_files = [Path("./dir/file_one.out"), Path("./dir/file_two.out")]
>>> tslr.wanted_files
{"file_one", "file_two"}

May also be set to None or other “falsy” value, in such case it is ignored.

property standard_parameters: Dict[str, Dict[str, Union[int, float, Callable]]]

Default parameters for spectra calculation for each spectra genre (ir, vcd, uv, ecd, raman, roa). This returns
a dictionary, but in fact it is a convenience, read-only attribute, modifying it will have no persisting effect.

update(other: Optional[Dict[str, dict]] = None, **kwargs)
Update stored conformers with given data.

Works like dict.update, but if key is already present, it updates dictionary associated with given key
rather than assigning new value. Keys of dictionary passed as positional parameter (or additional keyword
arguments given) should be conformers’ identifiers and its values should be dictionaries of {"genre":
values} for those conformers.

Please note, that values of status genres like ‘optimization_completed’ and ‘normal_termination’ will be
updated as well for such key, if are present in given new values.

>>> tslr.conformers
Conformers([('one', {'scf': -100, 'stoichiometry': 'CH4'})])
>>> tslr.update(
... {'one': {'scf': 97}, 'two': {'scf': 82, 'stoichiometry': 'CH4'}}
...)
>>> tslr.conformers
Conformers([

('one', {'scf': 97, 'stoichiometry': 'CH4'}),
('two', {'scf': 82, 'stoichiometry': 'CH4'}),

])

property input_dir: pathlib.Path

Directory, from which files should be read.

property output_dir: pathlib.Path

Directory, to which generated files should be written.

extract_iterate(path: Optional[Union[str, pathlib.Path]] = None, wanted_files: Optional[Iterable[str]] =
None, extension: Optional[str] = None, recursive: bool = False)→ Generator[Tuple[str,
dict], None, None]

Extracts data from chosen Gaussian output files present in given directory and yields data for each con-
former found.

Uses Tesliper.input_dir as source directory and Tesliper.wanted_files list of chosen files if these
are not explicitly given as ‘path’ and ‘wanted_files’ parameters.

Parameters

• path (str or pathlib.Path, optional) – Path to directory, from which Gaussian
files should be read. If not given or is None, Tesliper.output_dir will be used.

134 Chapter 3. References

tesliper, Release 0.9.3

• wanted_files (list of str, optional) – Filenames (without a file extension) of
conformers that should be extracted. If not given or is None, Tesliper.wanted_files
will be used. If Tesliper.wanted_files is also None, all found Gaussian output files
will be parsed.

• extension (str, optional) – Only files with given extension will be parsed. If omitted,
Tesliper will try to guess the extension from contents of input directory.

• recursive (bool) – If True, also subdirectories are searched for files to parse, otherwise
subdirectories are ignored. Defaults to False.

Yields tuple – Two item tuple with name of parsed file as first and extracted data as second item,
for each Gaussian output file parsed.

extract(path: Optional[Union[str, pathlib.Path]] = None, wanted_files: Optional[Iterable[str]] = None,
extension: Optional[str] = None, recursive: bool = False)

Extracts data from chosen Gaussian output files present in given directory.

Uses Tesliper.input_dir as source directory and Tesliper.wanted_files list of chosen files if these
are not explicitly given as path and wanted_files parameters.

Parameters

• path (str or pathlib.Path, optional) – Path to directory, from which Gaussian
files should be read. If not given or is None, Tesliper.output_dir will be used.

• wanted_files (list of str, optional) – Filenames (without a file extension) of
conformers that should be extracted. If not given or is None, Tesliper.wanted_files
will be used.

• extension (str, optional) – Only files with given extension will be parsed. If omitted,
Tesliper will try to guess the extension from contents of input directory.

• recursive (bool) – If True, also subdirectories are searched for files to parse, otherwise
subdirectories are ignored. Defaults to False.

load_parameters(path: Union[str, pathlib.Path], spectra_genre: Optional[str] = None)→ dict
Load calculation parameters from a file.

Parameters

• path (str or pathlib.Path, optional) – Path to the file with desired parameters
specification.

• spectra_genre (str, optional) – Genre of spectra that loaded parameters concerns.
If given, should be one of “ir”, “vcd”, “uv”, “ecd”, “raman”, or “roa” – parameters for that
spectra will be updated with loaded values. Otherwise no update is done, only parsed data
is returned.

Returns Parameters read from the file.

Return type dict

3.8. tesliper 135

tesliper, Release 0.9.3

Notes

For information on supported format of parameters configuration file, please refer to ParametersParser
documentation.

load_experimental(path: Union[str, pathlib.Path], spectrum_genre: str)→
tesliper.glassware.spectra.SingleSpectrum

Load experimental spectrum from a file. Data read from file is stored as SingleSpectrum instance in
Tesliper.experimental dictionary under spectrum_genre key.

Parameters

• path (str or pathlib.Path) – Path to the file with experimental spectrum.

• spectrum_genre (str) – Genre of the experimental spectrum that will be loaded. Should
be one of “ir”, “vcd”, “uv”, “ecd”, “raman”, or “roa”.

Returns Experimental spectrum loaded from the file.

Return type SingleSpectrum

calculate_single_spectrum(genre: str, conformer: Union[str, int], start: Optional[Union[int, float]] =
None, stop: Optional[Union[int, float]] = None, step: Optional[Union[int,
float]] = None, width: Optional[Union[int, float]] = None, fitting:
Optional[Callable[[numpy.ndarray, numpy.ndarray, numpy.ndarray, float],
numpy.ndarray]] = None)→ tesliper.glassware.spectra.SingleSpectrum

Calculates spectrum for requested conformer.

‘start’, ‘stop’, ‘step’, ‘width’, and ‘fitting’ parameters, if given, will be used instead of the parameters stored
in Tesliper.parameters attribute. ‘start’, ‘stop’, and ‘step’ values will be interpreted as cm^-1 for vi-
brational or scattering spectra/activities and as nm for electronic ones. Similarly, ‘width’ will be interpreted
as cm^-1 or eV. If not given, values stored in appropriate Tesliper.parameters are used.

Parameters

• genre (str) – Spectra genre (or related spectral activities genre) that should be calculated.
If given spectral activity genre, this genre will be used to calculate spectra instead of the
default activities.

• conformer (str or int) – Conformer, specified as it’s identifier or it’s index, for which
spectrum should be calculated.

• start (int or float, optional) – Number representing start of spectral range.

• stop (int or float, optional) – Number representing end of spectral range.

• step (int or float, optional) – Number representing step of spectral range.

• width (int or float, optional) – Number representing half width of maximum peak
height.

• fitting (function, optional) – Function, which takes spectral data, freqs, abscissa,
width as parameters and returns numpy.array of calculated, non-corrected spectrum points.
Basically one of datawork.gaussian or datawork.lorentzian.

Returns Calculated spectrum.

Return type SingleSpectrum

calculate_spectra(genres: Iterable[str] = ())→ Dict[str, tesliper.glassware.spectra.Spectra]
Calculates spectra for each requested genre using parameters stored in Tesliper.parameters attribute.

136 Chapter 3. References

tesliper, Release 0.9.3

Parameters genres (iterable of str) – List of spectra genres (or related spectral activities
genres) that should be calculated. If given spectral activity genre, this genre will be used
to calculate spectra instead of the default activities. If given empty sequence (default), all
available spectra will be calculated using default activities.

Returns dict of str – Dictionary with calculated spectra genres as keys and Spectra objects as
values.

Return type Spectra

get_averaged_spectrum(spectrum: str, energy: str, temperature: Optional[float] = None)→
tesliper.glassware.spectra.SingleSpectrum

Average previously calculated spectra using populations derived from specified energies.

New in version 0.9.1: The optional temperature parameter.

Changed in version 0.9.1: If spectra needed for averaging was not calulated so far, it will try to calulate it
instead of raising a KeyError.

Parameters

• spectrum (str) – Genre of spectrum that should be averaged. This spectrum should be
previously calculated using calculate_spectra() method.

• energy (str) – Genre of energies, that should be used to calculate populations of con-
formers. These populations will be used as weights for averaging.

• temperature (float, optional) – Temperature used for calculation of the Boltzmann
distribution for spectra averaging. If not given, Tesliper.temperature() value is used.

Returns Calculated averaged spectrum.

Return type SingleSpectrum

Raises ValueError – If no data for calculation of requested spectrum is available.

average_spectra()→ Dict[Tuple[str, str], tesliper.glassware.spectra.SingleSpectrum]
For each previously calculated spectra (stored in Tesliper.spectra attribute) calculate it’s average using
population derived from each available energies genre.

Returns Averaged spectrum for each previously calculated spectra and energies known as a dic-
tionary. It’s keys are tuples of genres used for averaging and values are SingleSpectrum
instances (so this dictionary is of form {tuple(“spectra”, “energies”): SingleSpectrum}).

Return type dict

export_data(genres: Sequence[str], fmt: str = 'txt', mode: str = 'x')
Saves specified data genres to disk in given file format.

File formats available by default are: “txt”, “csv”, “xlsx”, “gjf”. Note that not all formats may are compat-
ible with every genre (e.g. only genres associated with Geometry may be exported fo .gjf format). In such
case genres unsupported by given format are ignored.

Files produced are written to Tesliper.output_dir directory with filenames automatically generated
using adequate genre’s name and conformers’ identifiers. In case of “xlsx” format only one file is produced
and different data genres are written to separate sheets. If there are no values for given genre, no files will
be created for this genre.

Parameters

• genres (list of str) – List of genre names, that will be saved to disk.

• fmt (str) – File format of output files, defaults to “txt”.

3.8. tesliper 137

tesliper, Release 0.9.3

• mode (str) – Specifies how writing to file should be handled. May be one of: “a” (append
to existing file), “x” (only write if file doesn’t exist yet), “w” (overwrite file if it already
exists). Defaults to “x”.

export_energies(fmt: str = 'txt', mode: str = 'x')
Saves energies and population data to disk in given file format.

File formats available by default are: “txt”, “csv”, “xlsx”. Files produced are written to Tesliper.
output_dir directory with filenames automatically generated using adequate genre’s name and conform-
ers’ identifiers. In case of “xlsx” format only one file is produced and different data genres are written to
separate sheets.

Parameters

• fmt (str) – File format of output files, defaults to “txt”.

• mode (str) – Specifies how writing to file should be handled. May be one of: “a” (append
to existing file), “x” (only write if file doesn’t exist yet), “w” (overwrite file if it already
exists). Defaults to “x”.

export_spectral_data(fmt: str = 'txt', mode: str = 'x')
Saves unprocessed spectral data to disk in given file format.

File formats available by default are: “txt”, “csv”, “xlsx”. Files produced are written to Tesliper.
output_dir directory with filenames automatically generated using adequate genre’s name and conform-
ers’ identifiers. In case of “xlsx” format only one file is produced and different data genres are written to
separate sheets.

Parameters

• fmt (str) – File format of output files, defaults to “txt”.

• mode (str) – Specifies how writing to file should be handled. May be one of: “a” (append
to existing file), “x” (only write if file doesn’t exist yet), “w” (overwrite file if it already
exists). Defaults to “x”.

export_activities(fmt: str = 'txt', mode: str = 'x')
Saves unprocessed spectral activities to disk in given file format.

File formats available by default are: “txt”, “csv”, “xlsx”. Files produced are written to Tesliper.
output_dir directory with filenames automatically generated using adequate genre’s name and conform-
ers’ identifiers. In case of “xlsx” format only one file is produced and different data genres are written to
separate sheets.

Parameters

• fmt (str) – File format of output files, defaults to “txt”.

• mode (str) – Specifies how writing to file should be handled. May be one of: “a” (append
to existing file), “x” (only write if file doesn’t exist yet), “w” (overwrite file if it already
exists). Defaults to “x”.

export_spectra(fmt: str = 'txt', mode: str = 'x')
Saves spectra calculated previously to disk in given file format.

File formats available by default are: “txt”, “csv”, “xlsx”. Files produced are written to Tesliper.
output_dir directory with filenames automatically generated using adequate genre’s name and conform-
ers’ identifiers. In case of “xlsx” format only one file is produced and different data genres are written to
separate sheets.

Parameters

• fmt (str) – File format of output files, defaults to “txt”.

138 Chapter 3. References

tesliper, Release 0.9.3

• mode (str) – Specifies how writing to file should be handled. May be one of: “a” (append
to existing file), “x” (only write if file doesn’t exist yet), “w” (overwrite file if it already
exists). Defaults to “x”.

export_averaged(fmt: str = 'txt', mode: str = 'x')
Saves spectra calculated and averaged previously to disk in given file format.

File formats available by default are: “txt”, “csv”, “xlsx”. Files produced are written to Tesliper.
output_dir directory with filenames automatically generated using adequate genre’s name and conform-
ers’ identifiers. In case of “xlsx” format only one file is produced and different data genres are written to
separate sheets.

Parameters

• fmt (str) – File format of output files, defaults to “txt”.

• mode (str) – Specifies how writing to file should be handled. May be one of: “a” (append
to existing file), “x” (only write if file doesn’t exist yet), “w” (overwrite file if it already
exists). Defaults to “x”.

export_job_file(fmt: str = 'gjf', mode: str = 'x', geometry_genre: str = 'last_read_geom', **kwargs)
Saves conformers to disk as job files for quantum chemistry software in given file format.

Currently only “gjf” format is provided, used by Gaussian software. Files produced are written to
Tesliper.output_dir directory with filenames automatically generated using conformers’ identifiers.

Parameters

• fmt (str) – File format of output files, defaults to “gjf”.

• mode (str) – Specifies how writing to file should be handled. May be one of: “a” (append
to existing file), “x” (only write if file doesn’t exist yet), “w” (overwrite file if it already
exists). Defaults to “x”.

• geometry_genre (str) – Name of the data genre representing conformers’ geometry that
should be used as input geometry. Please note that the default value “last_read_geom” is
not necessarily an optimized geometry. Use “optimized_geom” if this is what you need.

• kwargs – Any additional keyword parameters are passed to the writer object, relevant to the
fmt requested. Keyword supported by the default "gjf"-format writer are as follows:

route A calculations route: keywords specifying calculations directives for quantum
chemical calculations software.

link0 Dictionary with “link zero” commands, where each key is command’s name
and each value is this command’s parameter.

comment Contents of title section, i.e. a comment about the calculations.

post_spec Anything that should be placed after conformer’s geometry specification.
Will be written to the file as given.

serialize(filename: str = '.tslr', mode: str = 'x')→ None
Serialize instance of Tesliper object to a file in output_dir.

Parameters

• filename (str) – Name of the file, to which content will be written. Defaults to
“.tslr”.

• mode (str) – Specifies how writing to file should be handled. Should be one of char-
acters: “x” or “w”. “x” - only write if file doesn’t exist yet; “w” - overwrite file if it
already exists. Defaults to “x”.

3.8. tesliper 139

tesliper, Release 0.9.3

Raises ValueError – If given any other mode than “x” or “w”.

Notes

If output_dir is None, current working directory is assumed.

classmethod load(source: Union[pathlib.Path, str])→ tesliper.tesliper.Tesliper
Load serialized Tesliper object from given file.

Parameters source (pathlib.Path or str) – Path to the file with serialized Tesliper ob-
ject.

Returns New instance of Tesliper class containing data read from the file.

Return type Tesliper

3.8.6 tesliper.writing

Objects for data serialization.

Aside from concrete implementations of WriterBase-derived classes for particular file formats, this module provides
a writer() factory function that allows to dynamically retrieve particular writer objects. This function is used by
Tesliper when exporting data to allow for use of user-provided WriterBase subclasses.

Modules

tesliper.writing.csv_writer Data export to CSV format.
tesliper.writing.gjf_writer Export of Gaussian input files (.gjf) for setting up new

calculation step.
tesliper.writing.serializer Serialization and deserialization of Tesliper objects.
tesliper.writing.txt_writer Data export to text files.
tesliper.writing.writer_base Interface for witing data to disk.
tesliper.writing.xlsx_writer Data export to excel files.

tesliper.writing.csv_writer

Data export to CSV format.

Classes

CsvWriter(destination[, mode, ...]) Writes extracted or calculated data to .csv format files.

class tesliper.writing.csv_writer.CsvWriter(destination: Union[str, pathlib.Path], mode: str = 'x',
include_header: bool = True, dialect: Union[str,
csv.Dialect] = 'excel', **fmtparams)

Writes extracted or calculated data to .csv format files.

Parameters

• destination (str or pathlib.Path) – Directory, to which generated files should be
written.

140 Chapter 3. References

tesliper, Release 0.9.3

• mode (str) – Specifies how writing to file should be handled. Should be one of characters:
‘a’ (append to existing file), ‘x’ (only write if file doesn’t exist yet), or ‘w’ (overwrite file
if it already exists).

• include_header (bool, optional) – Determines if file should contain a header with
column names, True by default.

• dialect (str or csv.Dialect) – Name of a dialect or csv.Dialect object, which
will be used by underlying csv.writer.

• fmtparams (dict, optional) – Additional formatting parameters for underlying
csv.writer to use. For list of valid parameters consult csv.Dialect documentation.

_get_handle(template: Union[str, string.Template], template_params: dict, open_params: Optional[dict] =
None)→ Iterator[IO]

Helper method for creating files. Given additional kwargs will be passed to Path.open() method. Im-
plemented as context manager for use with with statement.

Parameters

• template (str or string.Template) – Template that will be used to generate
filenames.

• template_params (dict) – Dictionary of {identifier: value} for .make_name
method.

• open_params (dict, optional) – Arguments for Path.open() used to open file.

Yields

• IO – file handle, will be closed automatically after with statement exits

• meta public:

_iter_handles(filenames: Iterable[str], template: Union[str, string.Template], template_params: dict,
open_params: Optional[dict] = None)→ Iterator[IO]

Helper method for iteration over generated files. Given additional kwargs will be passed to Path.open()
method.

Parameters

• filenames (list of str) – list of source filenames, used as value for ${conf} place-
holder in name_template

• template_params (dict) – Dictionary of {identifier: value} for .make_name
method.

• open_params (dict, optional) – arguments for Path.open() used to open file.

Yields

• TextIO – file handle, will be closed automatically on next iteration

• meta public:

generic(data: List[Union[tesliper.glassware.arrays.DataArray, tesliper.glassware.arrays.IntegerArray,
tesliper.glassware.arrays.FloatArray, tesliper.glassware.arrays.BooleanArray,
tesliper.glassware.arrays.InfoArray]], name_template: Union[str, string.Template] =
'${cat}.${det}.${ext}')

Writes generic data from multiple DataArray-like objects to a single file. Said objects should provide a
single value for each conformer.

Parameters

3.8. tesliper 141

tesliper, Release 0.9.3

• data – DataArray objects that are to be exported.

• name_template – Template that will be used to generate filenames. Refer to
make_name() documentation for details on supported placeholders.

energies(energies: tesliper.glassware.arrays.Energies, corrections:
Optional[tesliper.glassware.arrays.FloatArray] = None, name_template: Union[str,
string.Template] = 'distribution-${genre}.${ext}')

Writes Energies object to csv file. The output also contains derived values: populations, min_factors,
deltas. Corrections are added only when explicitly given.

Parameters

• energies (glassware.Energies) – Energies objects that is to be serialized

• corrections (glassware.DataArray, optional) – DataArray objects contain-
ing energies corrections

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames. Refer to make_name() documentation for details on supported place-
holders.

single_spectrum(spectrum: tesliper.glassware.spectra.SingleSpectrum, name_template: Union[str,
string.Template] = '${cat}.${genre}-${det}.${ext}')

Writes SingleSpectrum object to csv file.

Parameters

• spectrum (glassware.SingleSpectrum) – spectrum, that is to be serialized

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames. Refer to make_name() documentation for details on supported place-
holders.

spectral_activities(band: tesliper.glassware.arrays.SpectralActivities, data:
List[tesliper.glassware.arrays.SpectralActivities], name_template: Union[str,
string.Template] = '${conf}.${cat}-${det}.${ext}')

Writes SpectralActivities objects to csv files (one file for each conformer).

Parameters

• band (glassware.SpectralActivities) – Object containing information about
band at which transitions occur; it should be frequencies for vibrational data and wave-
lengths or excitation energies for electronic data.

• data (list of glassware.SpectralActivities) – SpectralActivities objects
that are to be serialized; all should contain information for the same set of conform-
ers and correspond to given band. Assumes that all data’s elements have the same
spectra_type, which is passed to the name_template as “det”.

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames. Refer to make_name() documentation for details on supported place-
holders.

Raises ValueError – if data is an empty sequence

property destination: pathlib.Path

Directory, to which generated files should be written.

Raises FileNotFoundError – If given destination doesn’t exist or is not a directory.

Type pathlib.Path

142 Chapter 3. References

tesliper, Release 0.9.3

property dialect

Name of a dialect (as string) or csv.Dialect object, which will be used by csv.writer.

static distribute_data(data: List)→ Tuple[Dict[str, List], Dict[str, Any]]
Sorts given data by genre category for use by specialized writing methods.

Returns

• distr (dict) – Dictionary with DataArray-like objects, sorted by their type. Each
{key: value} pair is {name of the type in lowercase format: list of DataArray objects
of this type}.

• extras (dict) – Spacial-case genres: extra information used by some writer methods
when exporting data. Available {key: value} pairs (if given in data) are:

corrections: dict of {“energy genre”: FloatArray},
frequencies: Bands,
wavelengths: Bands,
excitation: Bands,
stoichiometry: InfoArray,
charge: IntegerArray,
multiplicity: IntegerArray

property fmtparams

Dict of additional formatting parameters for csv.writer to use. For list of valid parameters consult
csv.Dialect documentation.

Raises TypeError – if invalid parameter is given

geometry(geometry: tesliper.glassware.arrays.Geometry, charge:
Optional[Union[tesliper.glassware.arrays.IntegerArray, Sequence[int], int]] = None, multiplicity:
Optional[Union[tesliper.glassware.arrays.IntegerArray, Sequence[int], int]] = None,
name_template: Union[str, string.Template] = '')

Interface for writing single object with geometry of each conformer. Evoked when handling Geometry
objects.

Parameters

• geometry – Positions of atoms in each conformer. Mandatory in custom implemen-
tation.

• charge – Value of each structure’s charge. Mandatory in custom implementation.

• multiplicity – Value of each structure’s multiplicity. Mandatory in custom imple-
mentation.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

make_name(template: Union[str, string.Template], conf: str = '', num: Union[str, int] = '', genre: str = '', cat:
str = '', det: str = '', ext: str = '')→ str

Create filename using given template and given or global values for known identifiers. The identifier should

3.8. tesliper 143

tesliper, Release 0.9.3

be used in the template as "${identifier}"where “identifier” is the name of identifier. Available names
and their meaning are:

${ext} - appropriate file extension
${conf} - name of the conformer
${num} - number of the file according to internal counter
${genre} - genre of exported data
${cat} - category of produced output
${det} - category-specific detail

The ${ext} identifier is filled with the value of Writers extension attribute if not explicitly given as
parameter to this method’s call. Values for other identifiers should be provided by the caller.

Parameters

• template (str or string.Template) – Template that will be used to generate
filenames. It should contain only known identifiers, listed above.

• conf (str) – value for ${conf} identifier, defaults to empty string.

• num (str or int) – value for ${str} identifier, defaults to empty string.

• genre (str) – value for ${genre} identifier, defaults to empty string.

• cat (str) – value for ${cat} identifier, defaults to empty string.

• det (str) – value for ${det} identifier, defaults to empty string.

• ext (str) – value for ${ext} identifier, defaults to empty string.

Raises ValueError – If given template or string contains any unexpected identifiers.

Examples

Must be first subclassed and instantiated:

>>> class MyWriter(WriterBase):
>>> extension = "foo"
>>> wrt = MyWriter("/path/to/some/directory/")

>>> wrt.make_name(template="somefile.${ext}")
"somefile.foo"
>>> wrt.make_name(template="${conf}.${ext}")
".foo" # conf is empty string by default
>>> wrt.make_name(template="${conf}.${ext}", conf="conformer")
"conformer.foo"
>>> wrt.make_name(template="Unknown_identifier_${bla}.${ext}")
Traceback (most recent call last):
ValueError: Unexpected identifiers given: bla.

property mode

Specifies how writing to file should be handled. Should be one of characters: “a”, “x”, or “w”. “a” -
append to existing file; “x” - only write if file doesn’t exist yet; “w” - overwrite file if it already exists.

Raises ValueError – If given anything other than “a”, “x”, or “w”.

144 Chapter 3. References

tesliper, Release 0.9.3

overview(energies: Sequence[tesliper.glassware.arrays.Energies], frequencies:
Optional[tesliper.glassware.arrays.Bands] = None, stoichiometry:
Optional[tesliper.glassware.arrays.InfoArray] = None, name_template: Union[str, string.Template]
= '')

Intercafe for generating an overview of known conformers: values of energies, number of imaginary fre-
quencies, and stoichiometry for each conformer. Evoked when handling Energies objects.

Parameters

• energies – List of objects representing different energies genres for each conformer.
Mandatory in custom implementation.

• frequencies – Bands of “freq” genre, with list of frequencies for each conformer.
Mandatory in custom implementation. May be None when method evoked by handler.

• stoichiometry – Stoichiometry of each conformer. Mandatory in custom imple-
mentation. May be None when method evoked by handler.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

spectral_data(band: tesliper.glassware.arrays.SpectralData, data:
List[tesliper.glassware.arrays.SpectralData], name_template: Union[str, string.Template] =
'${conf}.${cat}-${det}.${ext}')

Writes SpectralData objects to csv files (one file for each conformer).

Parameters

• band (glassware.SpectralData) – Object containing information about band at
which transitions occur; it should be frequencies for vibrational data and wavelengths
or excitation energies for electronic data.

• data (list of glassware.SpectralData) – SpectralData objects that are to be
serialized; all should contain information for the same set of conformers and corre-
spond to given band. Assumes that all data’s elements have the same spectra_type,
which is passed to the name_template as “det”.

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames. Refer to make_name() documentation for details on supported place-
holders.

Raises ValueError – if data is an empty sequence

write(data: List)→ None
Writes DataArray-like objects to disk, decides how to write them based on the type of each object. If
some types of given objects are not supported by this writer, data of this type is ignored and a warning is
emitted.

Parameters data (List) – DataArray-like objects that should be written to disk.

spectra(spectra: tesliper.glassware.spectra.Spectra, name_template: Union[str, string.Template] =
'${conf}.${genre}.${ext}')

Writes Spectra object to .csv files (one file for each conformer).

Parameters

• spectra (glassware.Spectra) – Spectra object, that is to be serialized.

3.8. tesliper 145

tesliper, Release 0.9.3

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames. Refer to make_name() documentation for details on supported place-
holders.

transitions(transitions: tesliper.glassware.arrays.Transitions, wavelengths: tesliper.glassware.arrays.Bands,
only_highest=True, name_template: Union[str, string.Template] =
'${conf}.${cat}-${det}.${ext}')

Writes electronic transitions data to CSV files (one for each conformer).

Parameters

• transitions (glassware.Transitions) – Electronic transitions data that should
be serialized.

• wavelengths (glassware.ElectronicActivities) – Object containing informa-
tion about wavelength at which transitions occur.

• only_highest (bool) – Specifies if only transition of highest contribution to given
band should be reported. If False all transition are saved to file. Defaults to True.

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames. Refer to make_name() documentation for details on supported place-
holders.

tesliper.writing.gjf_writer

Export of Gaussian input files (.gjf) for setting up new calculation step.

Classes

GjfWriter(destination[, mode, link0, route, ...]) Generates Gaussian input files for each conformer given.

class tesliper.writing.gjf_writer.GjfWriter(destination: Union[str, pathlib.Path], mode: str = 'x',
link0: Optional[Dict[str, Union[str, bool]]] = None, route:
str = '', comment: str = 'No information provided.',
post_spec: str = '')

Generates Gaussian input files for each conformer given.

Parameters

• destination (str or pathlib.Path) – Directory, to which generated files should be
written.

• mode (str, optional) – Specifies how writing to file should be handled. Should be one
of characters: “a” (append to existing file); “x” (only write if file doesn’t exist yet); or “w”
(overwrite file if it already exists). Defaults to “x”.

• link0 (Dict[str, Union[str, bool]], optional) – Link0 commands that
should be included in generated files, as a dictionary of {“command”: “value”}. Refer to
link0 for more information. If omitted, no link0 commands are added.

• route (str) – Calculation directives for Gaussan, refer to the Gaussian documentation
for information on how to construct the calculations route.

• comment (str, optional) – Additional text, describing the calculations, by default “No
information provided.”

146 Chapter 3. References

tesliper, Release 0.9.3

• post_spec (str, optional) – Additional specification written after the molecule spec-
ification, written to generated files as provided by the user (you need to take care of line
breaks). If omitted, no additional specification is added.

geometry(geometry: tesliper.glassware.arrays.Geometry, charge:
Optional[Union[tesliper.glassware.arrays.IntegerArray, Sequence[int], int]] = None, multiplicity:
Optional[Union[tesliper.glassware.arrays.IntegerArray, Sequence[int], int]] = None,
name_template: Union[str, string.Template] = '${conf}.${ext}')

Write given conformers’ geometries to multiple Gaussian input files.

Parameters

• geometry (Geometry) – Geometry object containing data for each confomer that
should be exported as Gaussian input file.

• charge (Union[IntegerArray, Sequence[int], int, None], optional) –
Molecule’s charge for each conformer. May be a sequence of values or one value that
will be repeated for each conformer. By default 0 for each.

• multiplicity (Union[IntegerArray, Sequence[int], int, None],
optional) – Molecule’s multiplicity for each conformer. May be a sequence of
values or one value that will be repeated for each conformer. By default 1 for each.

• name_template (Union[str, Template], optional) – Template that will be
used to generate filenames, by default “${conf}.${ext}”. Refer to make_name() doc-
umentation for details on supported placeholders.

_get_handle(template: Union[str, string.Template], template_params: dict, open_params: Optional[dict] =
None)→ Iterator[IO]

Helper method for creating files. Given additional kwargs will be passed to Path.open() method. Im-
plemented as context manager for use with with statement.

Parameters

• template (str or string.Template) – Template that will be used to generate
filenames.

• template_params (dict) – Dictionary of {identifier: value} for .make_name
method.

• open_params (dict, optional) – Arguments for Path.open() used to open file.

Yields

• IO – file handle, will be closed automatically after with statement exits

• meta public:

_iter_handles(filenames: Iterable[str], template: Union[str, string.Template], template_params: dict,
open_params: Optional[dict] = None)→ Iterator[IO]

Helper method for iteration over generated files. Given additional kwargs will be passed to Path.open()
method.

Parameters

• filenames (list of str) – list of source filenames, used as value for ${conf} place-
holder in name_template

• template_params (dict) – Dictionary of {identifier: value} for .make_name
method.

• open_params (dict, optional) – arguments for Path.open() used to open file.

3.8. tesliper 147

tesliper, Release 0.9.3

Yields

• TextIO – file handle, will be closed automatically on next iteration

• meta public:

property destination: pathlib.Path

Directory, to which generated files should be written.

Raises FileNotFoundError – If given destination doesn’t exist or is not a directory.

Type pathlib.Path

static distribute_data(data: List)→ Tuple[Dict[str, List], Dict[str, Any]]
Sorts given data by genre category for use by specialized writing methods.

Returns

• distr (dict) – Dictionary with DataArray-like objects, sorted by their type. Each
{key: value} pair is {name of the type in lowercase format: list of DataArray objects
of this type}.

• extras (dict) – Spacial-case genres: extra information used by some writer methods
when exporting data. Available {key: value} pairs (if given in data) are:

corrections: dict of {“energy genre”: FloatArray},
frequencies: Bands,
wavelengths: Bands,
excitation: Bands,
stoichiometry: InfoArray,
charge: IntegerArray,
multiplicity: IntegerArray

energies(energies: tesliper.glassware.arrays.Energies, corrections:
Optional[tesliper.glassware.arrays.FloatArray] = None, name_template: Union[str,
string.Template] = '')

Interface for writing energies values, and optionally their corrections. Evoked when handling Energies
objects.

Parameters

• energies – Conformers’ energies. Mandatory in custom implementation.

• corrections – Correction of energies values. Mandatory in custom implementation.
May be None when method evoked by handler.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

generic(data: List[Union[tesliper.glassware.arrays.DataArray, tesliper.glassware.arrays.IntegerArray,
tesliper.glassware.arrays.FloatArray, tesliper.glassware.arrays.BooleanArray,
tesliper.glassware.arrays.InfoArray]], name_template: Union[str, string.Template] = '')

Interface for writing generic data: any that provides one value for each conformer. Evoked when handling
DataArray, IntegerArray, FloatArray, BooleanArray, or InfoArray.

148 Chapter 3. References

tesliper, Release 0.9.3

Parameters data – List of objects that provide one value for each conformer.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

make_name(template: Union[str, string.Template], conf: str = '', num: Union[str, int] = '', genre: str = '', cat:
str = '', det: str = '', ext: str = '')→ str

Create filename using given template and given or global values for known identifiers. The identifier should
be used in the template as "${identifier}"where “identifier” is the name of identifier. Available names
and their meaning are:

${ext} - appropriate file extension
${conf} - name of the conformer
${num} - number of the file according to internal counter
${genre} - genre of exported data
${cat} - category of produced output
${det} - category-specific detail

The ${ext} identifier is filled with the value of Writers extension attribute if not explicitly given as
parameter to this method’s call. Values for other identifiers should be provided by the caller.

Parameters

• template (str or string.Template) – Template that will be used to generate
filenames. It should contain only known identifiers, listed above.

• conf (str) – value for ${conf} identifier, defaults to empty string.

• num (str or int) – value for ${str} identifier, defaults to empty string.

• genre (str) – value for ${genre} identifier, defaults to empty string.

• cat (str) – value for ${cat} identifier, defaults to empty string.

• det (str) – value for ${det} identifier, defaults to empty string.

• ext (str) – value for ${ext} identifier, defaults to empty string.

Raises ValueError – If given template or string contains any unexpected identifiers.

Examples

Must be first subclassed and instantiated:

>>> class MyWriter(WriterBase):
>>> extension = "foo"
>>> wrt = MyWriter("/path/to/some/directory/")

>>> wrt.make_name(template="somefile.${ext}")
"somefile.foo"
>>> wrt.make_name(template="${conf}.${ext}")
".foo" # conf is empty string by default
>>> wrt.make_name(template="${conf}.${ext}", conf="conformer")
"conformer.foo"
>>> wrt.make_name(template="Unknown_identifier_${bla}.${ext}")

(continues on next page)

3.8. tesliper 149

tesliper, Release 0.9.3

(continued from previous page)

Traceback (most recent call last):
ValueError: Unexpected identifiers given: bla.

property mode

Specifies how writing to file should be handled. Should be one of characters: “a”, “x”, or “w”. “a” -
append to existing file; “x” - only write if file doesn’t exist yet; “w” - overwrite file if it already exists.

Raises ValueError – If given anything other than “a”, “x”, or “w”.

overview(energies: Sequence[tesliper.glassware.arrays.Energies], frequencies:
Optional[tesliper.glassware.arrays.Bands] = None, stoichiometry:
Optional[tesliper.glassware.arrays.InfoArray] = None, name_template: Union[str, string.Template]
= '')

Intercafe for generating an overview of known conformers: values of energies, number of imaginary fre-
quencies, and stoichiometry for each conformer. Evoked when handling Energies objects.

Parameters

• energies – List of objects representing different energies genres for each conformer.
Mandatory in custom implementation.

• frequencies – Bands of “freq” genre, with list of frequencies for each conformer.
Mandatory in custom implementation. May be None when method evoked by handler.

• stoichiometry – Stoichiometry of each conformer. Mandatory in custom imple-
mentation. May be None when method evoked by handler.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

single_spectrum(spectrum: tesliper.glassware.spectra.SingleSpectrum, name_template: Union[str,
string.Template] = '')

Interface for writing a single spectrum to disk: calculated for one conformer or averaged. Evoked when
handling SingleSpectrum objects.

Parameters

• spectrum – Single calculated spectrum. Mandatory in custom implementation.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

spectra(spectra: tesliper.glassware.spectra.Spectra, name_template: Union[str, string.Template] = '')
Interface for writing a set of spectra of one type calculated for many conformers. Evoked when handling
Spectra objects.

Parameters

• spectra – Spectra of one type calculated for multiple conformers. Mandatory in
custom implementation.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

150 Chapter 3. References

tesliper, Release 0.9.3

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

spectral_activities(band: tesliper.glassware.arrays.Bands, data:
List[tesliper.glassware.arrays.SpectralActivities], name_template: Union[str,
string.Template] = '')

Interface for writing multiple objects with spectral activities (data that may be converted to signal in-
tensity). Evoked when handling one of the: VibrationalActivities, ElectronicActivities,
ScatteringActivities objects.

Parameters

• band – Band at which transitions occur for each conformer. Mandatory in custom
implementation.

• data – List of objects representing different spectral activities genres. Mandatory in
custom implementation.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

spectral_data(band: tesliper.glassware.arrays.Bands, data: List[tesliper.glassware.arrays.SpectralData],
name_template: Union[str, string.Template] = '')

Interface for writing multiple objects with spectral data that is not a spectral activity (cannot be con-
verted to signal intensity). Evoked when handling one of the: VibrationalData, ElectronicData,
ScatteringData objects.

Parameters

• band – Band at which transitions occur for each conformer. Mandatory in custom
implementation.

• data – List of objects representing different spectral data genres (but not spectral ac-
tivities). Mandatory in custom implementation.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

transitions(transitions: tesliper.glassware.arrays.Transitions, wavelengths: tesliper.glassware.arrays.Bands,
only_highest: bool = True, name_template: Union[str, string.Template] = '')

Interface for writing single object with electronic transitions data. Evoked when handling Transitions
objects.

Parameters

• transitions – List of objects representing different spectral data genres (but not
spectral_activities). Mandatory in custom implementation.

• wavelengths – Wavelengths at which transitions occur for each conformer. Manda-
tory in custom implementation.

• only_highest – Boolean flag indicating if all transitions should be written to disk or
only these transition that contributes the most for each wavelength/ May be omitted in
custom implementation.

3.8. tesliper 151

tesliper, Release 0.9.3

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

write(data: List)→ None
Writes DataArray-like objects to disk, decides how to write them based on the type of each object. If
some types of given objects are not supported by this writer, data of this type is ignored and a warning is
emitted.

Parameters data (List) – DataArray-like objects that should be written to disk.

property link0: Dict[str, Union[str, bool]]

Link0 commands, in a form of {"command": "value"}, that will be placed in the beginning of each
Gaussian input file created. If anny command is an unknown keword, an exception will be raised. Accepted
command keywords are as follows:

Mem str specifying required memory

Chk str with file path

OldChk str with file path

SChk str with file path

RWF str with file path

OldMatrix str with file path

OldRawMatrix str with file path

Int str with spec

D2E str with spec

KJob str with link number and, optionally, space-separated number

Save boolean

ErrorSave boolean

NoSave boolean, same as ErrorSave

Subst str with link number and space-separated file path

Commands that provide a file path as a value may be parametrized for each conformer. You can put a
placeholder inside a given string path, that will be parametrized when writing to file. See make_name()
to see available placeholders. You may use any of values listed there, however ${conf} and ${num} will
probably be the most useful.

property route: str

Also known as # lines, specifies desired calculation type, model chemistry, and other options for Gaussian.
If pound sign is missing, it is added in the beginning. For supported keywords and syntax refer to the
Gaussian’s documentation.

152 Chapter 3. References

tesliper, Release 0.9.3

tesliper.writing.serializer

Serialization and deserialization of Tesliper objects.

Classes

ArchiveLoader(source[, encoding]) Class for deserialization of Tesliper objects.
ArchiveWriter(destination[, mode, encoding]) Class for serialization of Tesliper objects.

class tesliper.writing.serializer.ArchiveWriter(destination: Union[str, pathlib.Path], mode: str = 'x',
encoding: str = 'utf-8')

Class for serialization of Tesliper objects.

Structure of the produced archive:

.
arguments: {input_dir=str, output_dir=str, wanted_files=[str]}
parameters: {"ir": {params}, ..., "roa": {params}}
conformers

arguments: {"allow_data_inconsistency": bool,
"temperature_of_the_system": float}

filenames: [str]
kept: [bool]
data

filename_1: {genre=str: data}
| ...

filename_N: {genre=str: data}
spectra

experimental
spectra_genre_1: {attr_name: SingleSpectrum.attr}

| ...
spectra_genre_N: {attr_name: SingleSpectrum.attr}

calculated
spectra_genre_1: {attr_name: Spectra.attr}

| ...
spectra_genre_N: {attr_name: Spectra.attr}

averaged
spectra_genre_1-energies-genre-1: {attr_name: SingleSpectrum.attr}

...
spectra_genre_N-energies-genre-N: {attr_name: SingleSpectrum.attr}

Parameters

• destination (Union[str, Path]) – Path to target file.

• mode (str, optional) – Specifies how writing to file should be handled. Should be one
of characters: ‘a’ (append to existing file), ‘x’ (only write if file doesn’t exist yet), or ‘w’
(overwrite file if it already exists). Defaults to “x”.

• encoding (str, optional) – Encoding of the output, by default “utf-8”

property mode

Specifies how writing to file should be handled. Should be one of characters: “a”, “x”, or “w”. “a” -
append to existing file; “x” - only write if file doesn’t exist yet; “w” - overwrite file if it already exists.

3.8. tesliper 153

tesliper, Release 0.9.3

Raises ValueError – If given anything other than “a”, “x”, or “w”.

property destination: pathlib.Path

Directory, to which generated files should be written.

Raises FileNotFoundError – If given destination doesn’t exist or is not a directory.

Type pathlib.Path

jsonencode(obj: Any, *, skipkeys=False, ensure_ascii=True, check_circular=True, allow_nan=True,
cls=None, indent=None, separators=None, default=None, sort_keys=False, **kw)→ bytes

json.dumps wrapper, that encodes JSON produced.

class tesliper.writing.serializer.ArchiveLoader(source: Union[str, pathlib.Path], encoding: str =
'utf-8')

Class for deserialization of Tesliper objects.

Parameters

• source (Union[str, Path]) – Path to the source file.

• encoding (str, optional) – Source file encoding, by default “utf-8”.

property source: pathlib.Path

File, from which data should read.

Notes

If str given, it will be converted to pathlib.Path.

Raises FileNotFoundError – If given destination doesn’t exist.

Type pathlib.Path

jsondecode(string: bytes, *, cls=None, object_hook=None, parse_float=None, parse_int=None,
parse_constant=None, object_pairs_hook=None, **kw)→ Any

json.loads wrapper, that decodes bytes before parsing as JSON.

tesliper.writing.txt_writer

Data export to text files.

Classes

TxtWriter(destination[, mode]) Writes extracted or calculated data to .txt format files.

class tesliper.writing.txt_writer.TxtWriter(destination: Union[str, pathlib.Path], mode: str = 'x')
Writes extracted or calculated data to .txt format files.

Parameters

• destination (str or pathlib.Path) – Directory, to which generated files should be
written.

• mode (str) – Specifies how writing to file should be handled. Should be one of characters:
‘a’ (append to existing file), ‘x’ (only write if file doesn’t exist yet), or ‘w’ (overwrite file
if it already exists).

154 Chapter 3. References

tesliper, Release 0.9.3

generic(data: List[Union[tesliper.glassware.arrays.DataArray, tesliper.glassware.arrays.IntegerArray,
tesliper.glassware.arrays.FloatArray, tesliper.glassware.arrays.BooleanArray,
tesliper.glassware.arrays.InfoArray]], name_template: Union[str, string.Template] =
'${cat}.${det}.${ext}')

Writes generic data from multiple DataArray-like objects to a single file. Said objects should provide a
single value for each conformer.

Parameters

• data – DataArray objects that are to be exported.

• name_template – Template that will be used to generate filenames. Refer to
make_name() documentation for details on supported placeholders.

overview(energies: Sequence[tesliper.glassware.arrays.Energies], frequencies:
Optional[tesliper.glassware.arrays.Bands] = None, stoichiometry:
Optional[tesliper.glassware.arrays.InfoArray] = None, name_template: Union[str, string.Template]
= '${cat}.${ext}')

Writes essential information from multiple Energies objects to single txt file.

Notes

All Energy objects given should contain information for the same set of files.

Parameters

• energies (list of glassware.Energies) – Energies objects that is to be ex-
ported

• frequencies (glassware.DataArray, optional) – DataArray object containing
frequencies, needed for imaginary frequencies count

• stoichiometry (glassware.InfoArray, optional) – InfoArray object contain-
ing stoichiometry information

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames. Refer to make_name() documentation for details on supported place-
holders.

energies(energies: tesliper.glassware.arrays.Energies, corrections:
Optional[tesliper.glassware.arrays.FloatArray] = None, name_template: Union[str,
string.Template] = 'distribution-${genre}.${ext}')

Writes Energies object to txt file.

Parameters

• energies (glassware.Energies) – Energies object that is to be serialized

• corrections (glassware.DataArray, optional) – DataArray object, contain-
ing energies corrections

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames. Refer to make_name() documentation for details on supported place-
holders.

single_spectrum(spectrum: tesliper.glassware.spectra.SingleSpectrum, name_template: Union[str,
string.Template] = '${cat}.${genre}-${det}.${ext}')

Writes SingleSpectrum object to txt file.

Parameters

3.8. tesliper 155

tesliper, Release 0.9.3

• spectrum (glassware.SingleSpectrum) – spectrum, that is to be serialized

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames. Refer to make_name() documentation for details on supported place-
holders.

spectral_activities(band: tesliper.glassware.arrays.SpectralActivities, data:
List[tesliper.glassware.arrays.SpectralActivities], name_template: Union[str,
string.Template] = '${conf}.${cat}-${det}.${ext}')

Writes SpectralActivities objects to txt files (one for each conformer).

Parameters

• band (glassware.SpectralActivities) – object containing information about
band at which transitions occur; it should be frequencies for vibrational data and wave-
lengths or excitation energies for electronic data

• data (list of glassware.SpectralActivities) – SpectralActivities objects
that are to be serialized; all should contain information for the same conformers. As-
sumes that all data’s elements have the same spectra_type, which is passed to the
name_template as “det”.

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames. Refer to make_name() documentation for details on supported place-
holders.

Raises ValueError – if data is an empty sequence

spectral_data(band: tesliper.glassware.arrays.SpectralActivities, data:
List[tesliper.glassware.arrays.SpectralData], name_template: Union[str, string.Template] =
'${conf}.${cat}-${det}.${ext}')

Writes SpectralData objects to txt files (one for each conformer).

Parameters

• band (glassware.SpectralData) – object containing information about band at
which transitions occur; it should be frequencies for vibrational data and wavelengths
or excitation energies for electronic data

• data (list of glassware.SpectralData) – SpectralData objects that are to be
serialized; all should contain information for the same conformers. Assumes that all
data’s elements have the same spectra_type, which is passed to the name_template as
“det”.

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames. Refer to make_name() documentation for details on supported place-
holders.

Raises ValueError – if data is an empty sequence

spectra(spectra: tesliper.glassware.spectra.Spectra, name_template: Union[str, string.Template] =
'${conf}.${genre}.${ext}')

Writes Spectra object to text files (one for each conformer).

Parameters

• spectra (glassware.Spectra) – Spectra object, that is to be serialized

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames. Refer to make_name() documentation for details on supported place-
holders.

156 Chapter 3. References

tesliper, Release 0.9.3

transitions(transitions: tesliper.glassware.arrays.Transitions, wavelengths: tesliper.glassware.arrays.Bands,
only_highest=True, name_template: Union[str, string.Template] =
'${conf}.${cat}-${det}.${ext}')

Writes electronic transitions data to text files (one for each conformer).

Parameters

• transitions (glassware.Transitions) – Electronic transitions data that should
be serialized.

• wavelengths (glassware.ElectronicActivities) – Object containing informa-
tion about wavelength at which transitions occur.

• only_highest (bool) – Specifies if only transition of highest contribution to given
band should be reported. If False all transition are saved to file. Defaults to True.

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames. Refer to make_name() documentation for details on supported place-
holders.

_get_handle(template: Union[str, string.Template], template_params: dict, open_params: Optional[dict] =
None)→ Iterator[IO]

Helper method for creating files. Given additional kwargs will be passed to Path.open() method. Im-
plemented as context manager for use with with statement.

Parameters

• template (str or string.Template) – Template that will be used to generate
filenames.

• template_params (dict) – Dictionary of {identifier: value} for .make_name
method.

• open_params (dict, optional) – Arguments for Path.open() used to open file.

Yields

• IO – file handle, will be closed automatically after with statement exits

• meta public:

_iter_handles(filenames: Iterable[str], template: Union[str, string.Template], template_params: dict,
open_params: Optional[dict] = None)→ Iterator[IO]

Helper method for iteration over generated files. Given additional kwargs will be passed to Path.open()
method.

Parameters

• filenames (list of str) – list of source filenames, used as value for ${conf} place-
holder in name_template

• template_params (dict) – Dictionary of {identifier: value} for .make_name
method.

• open_params (dict, optional) – arguments for Path.open() used to open file.

Yields

• TextIO – file handle, will be closed automatically on next iteration

• meta public:

3.8. tesliper 157

tesliper, Release 0.9.3

property destination: pathlib.Path

Directory, to which generated files should be written.

Raises FileNotFoundError – If given destination doesn’t exist or is not a directory.

Type pathlib.Path

static distribute_data(data: List)→ Tuple[Dict[str, List], Dict[str, Any]]
Sorts given data by genre category for use by specialized writing methods.

Returns

• distr (dict) – Dictionary with DataArray-like objects, sorted by their type. Each
{key: value} pair is {name of the type in lowercase format: list of DataArray objects
of this type}.

• extras (dict) – Spacial-case genres: extra information used by some writer methods
when exporting data. Available {key: value} pairs (if given in data) are:

corrections: dict of {“energy genre”: FloatArray},
frequencies: Bands,
wavelengths: Bands,
excitation: Bands,
stoichiometry: InfoArray,
charge: IntegerArray,
multiplicity: IntegerArray

geometry(geometry: tesliper.glassware.arrays.Geometry, charge:
Optional[Union[tesliper.glassware.arrays.IntegerArray, Sequence[int], int]] = None, multiplicity:
Optional[Union[tesliper.glassware.arrays.IntegerArray, Sequence[int], int]] = None,
name_template: Union[str, string.Template] = '')

Interface for writing single object with geometry of each conformer. Evoked when handling Geometry
objects.

Parameters

• geometry – Positions of atoms in each conformer. Mandatory in custom implemen-
tation.

• charge – Value of each structure’s charge. Mandatory in custom implementation.

• multiplicity – Value of each structure’s multiplicity. Mandatory in custom imple-
mentation.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

make_name(template: Union[str, string.Template], conf: str = '', num: Union[str, int] = '', genre: str = '', cat:
str = '', det: str = '', ext: str = '')→ str

Create filename using given template and given or global values for known identifiers. The identifier should
be used in the template as "${identifier}"where “identifier” is the name of identifier. Available names
and their meaning are:

158 Chapter 3. References

tesliper, Release 0.9.3

${ext} - appropriate file extension
${conf} - name of the conformer
${num} - number of the file according to internal counter
${genre} - genre of exported data
${cat} - category of produced output
${det} - category-specific detail

The ${ext} identifier is filled with the value of Writers extension attribute if not explicitly given as
parameter to this method’s call. Values for other identifiers should be provided by the caller.

Parameters

• template (str or string.Template) – Template that will be used to generate
filenames. It should contain only known identifiers, listed above.

• conf (str) – value for ${conf} identifier, defaults to empty string.

• num (str or int) – value for ${str} identifier, defaults to empty string.

• genre (str) – value for ${genre} identifier, defaults to empty string.

• cat (str) – value for ${cat} identifier, defaults to empty string.

• det (str) – value for ${det} identifier, defaults to empty string.

• ext (str) – value for ${ext} identifier, defaults to empty string.

Raises ValueError – If given template or string contains any unexpected identifiers.

Examples

Must be first subclassed and instantiated:

>>> class MyWriter(WriterBase):
>>> extension = "foo"
>>> wrt = MyWriter("/path/to/some/directory/")

>>> wrt.make_name(template="somefile.${ext}")
"somefile.foo"
>>> wrt.make_name(template="${conf}.${ext}")
".foo" # conf is empty string by default
>>> wrt.make_name(template="${conf}.${ext}", conf="conformer")
"conformer.foo"
>>> wrt.make_name(template="Unknown_identifier_${bla}.${ext}")
Traceback (most recent call last):
ValueError: Unexpected identifiers given: bla.

property mode

Specifies how writing to file should be handled. Should be one of characters: “a”, “x”, or “w”. “a” -
append to existing file; “x” - only write if file doesn’t exist yet; “w” - overwrite file if it already exists.

Raises ValueError – If given anything other than “a”, “x”, or “w”.

write(data: List)→ None
Writes DataArray-like objects to disk, decides how to write them based on the type of each object. If
some types of given objects are not supported by this writer, data of this type is ignored and a warning is
emitted.

3.8. tesliper 159

tesliper, Release 0.9.3

Parameters data (List) – DataArray-like objects that should be written to disk.

tesliper.writing.writer_base

Interface for witing data to disk.

This module contains writer() factory function that enables to dynamically create a writer object that’s responsible
for saving data in a desired output format. writer() instantiates a subclass of WriterBase, an Abstract Base Class
also defined here. WriterBase provides an interface for all serial data writers (objects that export conformers’ data to
multiple files) used by tesliper.

WriterBase expects it’s subclasses to provide an extention class attribute, which is used as an extension of files pro-
duced by this particular writer, and also as an identifier for the output format, used by the writer() factory function.
tesliper is shipped with four such writers: TxtWriter for writting to .txt files, CsvWriter for writting in CSV
format, XlsxWriter for creating Excel files, and GjfWriter for preparing Gaussian input files.

You may want to export your data to other file formats - in such case you will need to implement your own writer. To
do this, subclass WriterBase, provide it’s extension as mentioned above, and implement writing methods for data you
intend to support in your writer. The table below lists these methods, along with a brief description and DataArray-like
object, for which the method will be called by writer’s write() method.

Table 33: Methods used by default to write certain data
Writer’s
Method

Description Associated array

generic() Generic data: any genre that provides one value for
each conformer.

DataArray, IntegerArray,
FloatArray, BooleanArray,
InfoArray.

overview() General information about conformers: energies,
imaginary frequencies, stoichiometry.

Energies

energies() Detailed information about conformers’ relative
energy, including calculated populations

Energies

single_spectrum()A spectrum - calculated for single conformer or av-
eraged.

SingleSpectrum

spectral_data()Data related to spectral activity, but not convertible
to spectra.

SpectralData

spectral_activities()Data that may be used to simulate conformers’
spectra.

SpectralActivities

spectra() Spectra for multiple conformers. Spectra
transitions() Electronic transitions from ground to excited state,

contributing to each band.
Transitions

geometry() Geometry (positions of atoms in space) of con-
formers.

Geometry

Note: These methods are not abstract methods, but will still raise a NotImplementedError if called. This is to let
you omit implementation of methods you don’t need or wouldn’t make sense for the particular format and still provide
an abstract interface. tesliper takes advantage of this in it’s implementation of GjfWriter, which only implements
geometry() method, because export of, e.g. a calculated spectrum as a Gaussian input would be pointless.

Writer object decides which of these methods to call based on the type of each DataArray-like object passed to the
write() method. For some of them, it also passes additional DataArray-like objects, referred to as extras, e.g.
correspomding Bands for spectral data. See documentation for particular method to learn, which of its parameters are
mandatory, which are optional, and which should expect None as a possible value of extra.

160 Chapter 3. References

tesliper, Release 0.9.3

When implementing one of these methods in your writer, you should take care of opening and closing file files, for-
matting data you export, and writing to the file. For the first part you may use one of the helper methods that provide a
ready-to-use file handles: _iter_handles() for writing to many files in batch or _get_handle() for writing to one
file only. Both require a template that will be used to generate filename for produced files. To learn more about how
these templates are handled by tesliper, see make_name() documentation.

As mentioned before, writer object uses type of the DataArray-like object (or, more precisely, a name of its class)
to decide which method to use for writing to disk. If you introduce a new subclass of DataArray for handling some
genres, you will need to tell the Writer class, how it should handle these new objects. This is done by implementing
a custom handler method. It’s name should begin with an underscore, followed by the name of your subclass in lower
case, followed by “_handler”. Also, it should take two parameters: data and extras. First one is a list of instances
of your subclass, second one is a dictionary of special-case genres, both retrieved from arguments given to write()
method (for details on which genres as treated as special cases, see distribute_data()). Handler is responsible for
calling appropriate writing method with arguments it needs.

Here is an example: let’s assume you have implemented a custom DataArray subclass for “ldip” and “lrot” genres
with some additional functionality, but you’d like tesliper to treat it as the original ElectronicActivities class
for purposes of writing to disk.

class LengthActivities(ElectronicActivities):
associated_genres = ("ldip", "lrot")
... # custom functionality implemented here

class UpdatedTxtWriter(TxtWriter):
extension = "txt"

def _lengthactivities_handler(self, data, extras):
written like ``ElectronicActivities``, so just delegate to its handler
self._electronicactivities_handler(data, extras)

If you’d like to treat this new subclass differently, then you should provide a custom writting method for this kind of
data:

class UpdatedTxtWriter(TxtWriter):
extension = "txt"

def length_activities(
self,
band: Bands,
data: List[LengthActivities],
name_template: Union[str, Template] = "${conf}.${cat}-${det}.${ext}",

):
we will use ``_iter_handles`` method for opening/closing files
template_params = {"genre": band.genre, "cat": "activity", "det": "length"}
handles = self._iter_handles(band.filenames, name_template, template_params)
we will iterate conformer by conformer
values = zip(*[arr.values for arr in data])
for values, handle in zip(values, handles):

... # writting logic

def _lengthactivities_handler(self, data, extras):
self.length_activities(band=extras["wavelengths"], data=data)

In both cases UpdatedTxtWriter will be picked by the writer() instead of the original TxtWriter, thanks to the
automatic registration done by the base class WriterBase.

3.8. tesliper 161

tesliper, Release 0.9.3

Warning: If extension = "txt" line would be omitted in the UpdatedTxtWriter definition, it would be
picked by the writer() for “txt” format anyway, because extension’s value would be inherited from TxtWriter.
If you want to prevent this, you can provide a falsy value for the extension class attribute, i.e. an empty string or
None. If your custom writer should still use the same extension as one of the default writers, provide extension
also as an instance-level attribute:
class UpdatedTxtWriter(TxtWriter):

extension = "" # do not register

def __init__(self, destination, mode):
super().__init__(destination, mode)
self.extension = "txt" # use in generated filenames

Functions

writer(fmt, destination[, mode]) Factory function that returns concrete implementation of
WriterBase subclass, most recently defined for export
to fmt file format.

Classes

WriterBase(destination[, mode]) Base class for writers that handle export process based
on genre of exported data.

tesliper.writing.writer_base.writer(fmt: str, destination: Union[str, pathlib.Path], mode: str = 'x',
**kwargs)→ tesliper.writing.writer_base.WriterBase

Factory function that returns concrete implementation of WriterBase subclass, most recently defined for export
to fmt file format.

Parameters

• fmt (str) – File format, to which export will be done.

• destination (Union[str, Path]) – Path to file or direcotry, to which export will be
done.

• mode (str) – Specifies how writing to file should be handled. Should be one of characters:
“a” (append to existing file), “x” (only write if file doesn’t exist yet), or “w” (overwrite
file if it already exists). Defaults to “x”.

• kwargs – Any additional keword arguments will be passed as-is to the constructor of the
retrieved WriterBase subclass.

Returns Initialized WriterBase subclass most recently defined for export to fmt file format.

Return type WriterBase

Raises ValueError – If WriterBase subclass for export to fmt file format was not defined.

class tesliper.writing.writer_base.WriterBase(destination: Union[str, pathlib.Path], mode: str = 'x')
Base class for writers that handle export process based on genre of exported data.

Subclasses should provide an extension class-level attribute and writting methods that subclass intend to sup-
port (see below). Value of extension will be used to register subclass as a default writer for export to files that

162 Chapter 3. References

tesliper, Release 0.9.3

this value indicates (“txt”, “csv”, etc.). Not providing value for this attribute results in a TypeError exception.
If subclass should not be registered, use an empty string as the attribute’s value.

WriterBase provides a write() method for writing arbitrary DataArray-like objects to disk. It dispatches
those objects to appropriate writing methods, based on their type. Those writing methods are:

generic(),
overview(),
energies(),
single_spectrum(),
spectral_data(),
spectral_activities(),
spectra(),
transitions(),
geometry().

To learn more about implementing custom writers, see their documentation and writer_base documentation
or extend section.

Parameters

• destination (str or pathlib.Path) – Directory, to which generated files should be
written.

• mode (str) – Specifies how writing to file should be handled. Should be one of characters:
‘a’ (append to existing file), ‘x’ (only write if file doesn’t exist yet), or ‘w’ (overwrite file
if it already exists).

energies_order = ['zpe', 'ten', 'ent', 'gib', 'scf']

Default order, in which energy-related data is written to files.

abstract property extension

Identifier of this writer, indicating the format of files generated, and a default extension of those files used
by the make_name() method. A falsy value, i.e. an empty string or None prevents this writer from being
registered and used by writer() factory function.

Returns Default extension of files generated by this writer and it’s identifier.

Return type str

property mode

Specifies how writing to file should be handled. Should be one of characters: “a”, “x”, or “w”. “a” -
append to existing file; “x” - only write if file doesn’t exist yet; “w” - overwrite file if it already exists.

Raises ValueError – If given anything other than “a”, “x”, or “w”.

property destination: pathlib.Path

Directory, to which generated files should be written.

Raises FileNotFoundError – If given destination doesn’t exist or is not a directory.

Type pathlib.Path

static distribute_data(data: List)→ Tuple[Dict[str, List], Dict[str, Any]]
Sorts given data by genre category for use by specialized writing methods.

Returns

• distr (dict) – Dictionary with DataArray-like objects, sorted by their type. Each
{key: value} pair is {name of the type in lowercase format: list of DataArray objects
of this type}.

3.8. tesliper 163

tesliper, Release 0.9.3

• extras (dict) – Spacial-case genres: extra information used by some writer methods
when exporting data. Available {key: value} pairs (if given in data) are:

corrections: dict of {“energy genre”: FloatArray},
frequencies: Bands,
wavelengths: Bands,
excitation: Bands,
stoichiometry: InfoArray,
charge: IntegerArray,
multiplicity: IntegerArray

make_name(template: Union[str, string.Template], conf: str = '', num: Union[str, int] = '', genre: str = '', cat:
str = '', det: str = '', ext: str = '')→ str

Create filename using given template and given or global values for known identifiers. The identifier should
be used in the template as "${identifier}"where “identifier” is the name of identifier. Available names
and their meaning are:

${ext} - appropriate file extension
${conf} - name of the conformer
${num} - number of the file according to internal counter
${genre} - genre of exported data
${cat} - category of produced output
${det} - category-specific detail

The ${ext} identifier is filled with the value of Writers extension attribute if not explicitly given as
parameter to this method’s call. Values for other identifiers should be provided by the caller.

Parameters

• template (str or string.Template) – Template that will be used to generate
filenames. It should contain only known identifiers, listed above.

• conf (str) – value for ${conf} identifier, defaults to empty string.

• num (str or int) – value for ${str} identifier, defaults to empty string.

• genre (str) – value for ${genre} identifier, defaults to empty string.

• cat (str) – value for ${cat} identifier, defaults to empty string.

• det (str) – value for ${det} identifier, defaults to empty string.

• ext (str) – value for ${ext} identifier, defaults to empty string.

Raises ValueError – If given template or string contains any unexpected identifiers.

164 Chapter 3. References

tesliper, Release 0.9.3

Examples

Must be first subclassed and instantiated:

>>> class MyWriter(WriterBase):
>>> extension = "foo"
>>> wrt = MyWriter("/path/to/some/directory/")

>>> wrt.make_name(template="somefile.${ext}")
"somefile.foo"
>>> wrt.make_name(template="${conf}.${ext}")
".foo" # conf is empty string by default
>>> wrt.make_name(template="${conf}.${ext}", conf="conformer")
"conformer.foo"
>>> wrt.make_name(template="Unknown_identifier_${bla}.${ext}")
Traceback (most recent call last):
ValueError: Unexpected identifiers given: bla.

_get_handle(template: Union[str, string.Template], template_params: dict, open_params: Optional[dict] =
None)→ Iterator[IO]

Helper method for creating files. Given additional kwargs will be passed to Path.open() method. Im-
plemented as context manager for use with with statement.

Parameters

• template (str or string.Template) – Template that will be used to generate
filenames.

• template_params (dict) – Dictionary of {identifier: value} for .make_name
method.

• open_params (dict, optional) – Arguments for Path.open() used to open file.

Yields

• IO – file handle, will be closed automatically after with statement exits

• meta public:

_iter_handles(filenames: Iterable[str], template: Union[str, string.Template], template_params: dict,
open_params: Optional[dict] = None)→ Iterator[IO]

Helper method for iteration over generated files. Given additional kwargs will be passed to Path.open()
method.

Parameters

• filenames (list of str) – list of source filenames, used as value for ${conf} place-
holder in name_template

• template_params (dict) – Dictionary of {identifier: value} for .make_name
method.

• open_params (dict, optional) – arguments for Path.open() used to open file.

Yields

• TextIO – file handle, will be closed automatically on next iteration

• meta public:

3.8. tesliper 165

tesliper, Release 0.9.3

write(data: List)→ None
Writes DataArray-like objects to disk, decides how to write them based on the type of each object. If
some types of given objects are not supported by this writer, data of this type is ignored and a warning is
emitted.

Parameters data (List) – DataArray-like objects that should be written to disk.

generic(data: List[Union[tesliper.glassware.arrays.DataArray, tesliper.glassware.arrays.IntegerArray,
tesliper.glassware.arrays.FloatArray, tesliper.glassware.arrays.BooleanArray,
tesliper.glassware.arrays.InfoArray]], name_template: Union[str, string.Template] = '')

Interface for writing generic data: any that provides one value for each conformer. Evoked when handling
DataArray, IntegerArray, FloatArray, BooleanArray, or InfoArray.

Parameters data – List of objects that provide one value for each conformer.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

overview(energies: Sequence[tesliper.glassware.arrays.Energies], frequencies:
Optional[tesliper.glassware.arrays.Bands] = None, stoichiometry:
Optional[tesliper.glassware.arrays.InfoArray] = None, name_template: Union[str, string.Template]
= '')

Intercafe for generating an overview of known conformers: values of energies, number of imaginary fre-
quencies, and stoichiometry for each conformer. Evoked when handling Energies objects.

Parameters

• energies – List of objects representing different energies genres for each conformer.
Mandatory in custom implementation.

• frequencies – Bands of “freq” genre, with list of frequencies for each conformer.
Mandatory in custom implementation. May be None when method evoked by handler.

• stoichiometry – Stoichiometry of each conformer. Mandatory in custom imple-
mentation. May be None when method evoked by handler.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

energies(energies: tesliper.glassware.arrays.Energies, corrections:
Optional[tesliper.glassware.arrays.FloatArray] = None, name_template: Union[str,
string.Template] = '')

Interface for writing energies values, and optionally their corrections. Evoked when handling Energies
objects.

Parameters

• energies – Conformers’ energies. Mandatory in custom implementation.

• corrections – Correction of energies values. Mandatory in custom implementation.
May be None when method evoked by handler.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

166 Chapter 3. References

tesliper, Release 0.9.3

single_spectrum(spectrum: tesliper.glassware.spectra.SingleSpectrum, name_template: Union[str,
string.Template] = '')

Interface for writing a single spectrum to disk: calculated for one conformer or averaged. Evoked when
handling SingleSpectrum objects.

Parameters

• spectrum – Single calculated spectrum. Mandatory in custom implementation.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

spectral_data(band: tesliper.glassware.arrays.Bands, data: List[tesliper.glassware.arrays.SpectralData],
name_template: Union[str, string.Template] = '')

Interface for writing multiple objects with spectral data that is not a spectral activity (cannot be con-
verted to signal intensity). Evoked when handling one of the: VibrationalData, ElectronicData,
ScatteringData objects.

Parameters

• band – Band at which transitions occur for each conformer. Mandatory in custom
implementation.

• data – List of objects representing different spectral data genres (but not spectral ac-
tivities). Mandatory in custom implementation.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

spectral_activities(band: tesliper.glassware.arrays.Bands, data:
List[tesliper.glassware.arrays.SpectralActivities], name_template: Union[str,
string.Template] = '')

Interface for writing multiple objects with spectral activities (data that may be converted to signal in-
tensity). Evoked when handling one of the: VibrationalActivities, ElectronicActivities,
ScatteringActivities objects.

Parameters

• band – Band at which transitions occur for each conformer. Mandatory in custom
implementation.

• data – List of objects representing different spectral activities genres. Mandatory in
custom implementation.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

spectra(spectra: tesliper.glassware.spectra.Spectra, name_template: Union[str, string.Template] = '')
Interface for writing a set of spectra of one type calculated for many conformers. Evoked when handling
Spectra objects.

Parameters

3.8. tesliper 167

tesliper, Release 0.9.3

• spectra – Spectra of one type calculated for multiple conformers. Mandatory in
custom implementation.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

transitions(transitions: tesliper.glassware.arrays.Transitions, wavelengths: tesliper.glassware.arrays.Bands,
only_highest: bool = True, name_template: Union[str, string.Template] = '')

Interface for writing single object with electronic transitions data. Evoked when handling Transitions
objects.

Parameters

• transitions – List of objects representing different spectral data genres (but not
spectral_activities). Mandatory in custom implementation.

• wavelengths – Wavelengths at which transitions occur for each conformer. Manda-
tory in custom implementation.

• only_highest – Boolean flag indicating if all transitions should be written to disk or
only these transition that contributes the most for each wavelength/ May be omitted in
custom implementation.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

geometry(geometry: tesliper.glassware.arrays.Geometry, charge:
Optional[Union[tesliper.glassware.arrays.IntegerArray, Sequence[int], int]] = None, multiplicity:
Optional[Union[tesliper.glassware.arrays.IntegerArray, Sequence[int], int]] = None,
name_template: Union[str, string.Template] = '')

Interface for writing single object with geometry of each conformer. Evoked when handling Geometry
objects.

Parameters

• geometry – Positions of atoms in each conformer. Mandatory in custom implemen-
tation.

• charge – Value of each structure’s charge. Mandatory in custom implementation.

• multiplicity – Value of each structure’s multiplicity. Mandatory in custom imple-
mentation.

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

168 Chapter 3. References

tesliper, Release 0.9.3

tesliper.writing.xlsx_writer

Data export to excel files.

Classes

XlsxWriter(destination[, mode, filename]) Writes extracted data to .xlsx file.

class tesliper.writing.xlsx_writer.XlsxWriter(destination: Union[str, pathlib.Path], mode: str = 'x',
filename: str = 'tesliper-output.${ext}')

Writes extracted data to .xlsx file.

Parameters

• destination (str or pathlib.Path) – Directory, to which generated files should be
written.

• mode (str) – Specifies how writing to file should be handled. Should be one of characters:
‘a’ (append to existing file), ‘x’ (only write if file doesn’t exist yet), or ‘w’ (overwrite file
if it already exists).

• filename (str or string.Template) – Filename of created .xlsx file or a template
for generation of the name using make_name() method.

write(data: List)→ None
Writes DataArray-like objects to disk, decides how to write them based on the type of each object. If
some types of given objects are not supported by this writer, data of this type is ignored and a warning is
emitted.

Parameters data (List) – DataArray-like objects that should be written to disk.

generic(data: List[Union[tesliper.glassware.arrays.DataArray, tesliper.glassware.arrays.IntegerArray,
tesliper.glassware.arrays.FloatArray, tesliper.glassware.arrays.BooleanArray,
tesliper.glassware.arrays.InfoArray]], name_template: Union[str, string.Template] = '${cat}.${det}')

Writes generic data from multiple DataArray-like objects to a single sheet. Said objects should provide
a single value for each conformer.

Parameters

• data – DataArray objects that are to be exported.

• name_template – Template that will be used to generate filenames. Refer to
make_name() documentation for details on supported placeholders.

overview(energies: Sequence[tesliper.glassware.arrays.Energies], frequencies:
Optional[tesliper.glassware.arrays.DataArray] = None, stoichiometry:
Optional[tesliper.glassware.arrays.InfoArray] = None, name_template: Union[str, string.Template]
= '${cat}')

Writes summarized information from multiple Energies objects to xlsx file. Creates a worksheet with
energy values and calculated populations for each energy object given, as well as number of imaginary
frequencies and stoichiometry of conformers if frequencies and stoichiometry are provided, respectively.

Parameters

• energies (list of glassware.Energies) – Energies objects that are to be ex-
ported

3.8. tesliper 169

tesliper, Release 0.9.3

• frequencies (glassware.DataArray, optional) – DataArray object containing
frequencies

• stoichiometry (glassware.InfoArray, optional) – InfoArray object contain-
ing stoichiometry information

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames, defaults to “${cat}”. Refer to make_name() documentation for details
on supported placeholders.

energies(energies: tesliper.glassware.arrays.Energies, corrections:
Optional[tesliper.glassware.arrays.FloatArray] = None, name_template: Union[str,
string.Template] = 'distribution-${genre}')

Writes detailed information from multiple Energies objects to xlsx file. Creates one worksheet for each
Energies object provided. The sheet contains energy values, energy difference to lowest-energy con-
former, Boltzmann factor, population of each conformer and corrections, if those are provided.

Parameters

• energies (list of glassware.Energies) – Energies objects that are to be ex-
ported

• corrections (list of glassware.DataArray) – DataArray objects containing
energies corrections

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames, defaults to “distribution-${genre}”. Refer to make_name() documen-
tation for details on supported placeholders.

spectral_data(band: tesliper.glassware.arrays.SpectralActivities, data:
Iterable[tesliper.glassware.arrays.SpectralData], name_template: Union[str,
string.Template] = '${conf}.${cat}-${det}')

Writes SpectralData objects to xlsx file (one sheet for each conformer).

Parameters

• band (glassware.SpectralActivities) – object containing information about
band at which transitions occur; it should be frequencies for vibrational data and wave-
lengths or excitation energies for electronic data

• data (iterable of glassware.SpectralData) – SpectralData objects that are to
be serialized; all should contain information for the same conformers. Assumes that
all data’s elements have the same spectra_type, which is passed to the name_template
as “det”.

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames, defaults to “${conf}.${cat}-${det}”. Refer to make_name() docu-
mentation for details on supported placeholders.

Raises ValueError – if data is an empty sequence

spectral_activities(band: tesliper.glassware.arrays.SpectralActivities, data:
Iterable[tesliper.glassware.arrays.SpectralActivities], name_template: Union[str,
string.Template] = '${conf}.${cat}-${det}')

Writes SpectralActivities objects to xlsx file (one sheet for each conformer).

Parameters

• band (glassware.SpectralActivities) – object containing information about
band at which transitions occur; it should be frequencies for vibrational data and wave-
lengths or excitation energies for electronic data

170 Chapter 3. References

tesliper, Release 0.9.3

• data (iterable of glassware.SpectralActivities) – SpectralActivities ob-
jects that are to be serialized; all should contain information for the same conformers.
Assumes that all data’s elements have the same spectra_type, which is passed to the
name_template as “det”.

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames, defaults to “${conf}.${cat}-${det}”. Refer to make_name() docu-
mentation for details on supported placeholders.

Raises ValueError – if data is an empty sequence

spectra(spectra: tesliper.glassware.spectra.Spectra, name_template: Union[str, string.Template] =
'${genre}')

Writes given spectra collectively to one sheet of xlsx workbook.

Parameters

• spectra (glassware.Spectra) – Spectra object, that is to be serialized

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames, defaults to “${genre}”. Refer to make_name() documentation for
details on supported placeholders.

single_spectrum(spectrum: tesliper.glassware.spectra.SingleSpectrum, name_template: Union[str,
string.Template] = '${cat}.${genre}-${det}')

Writes SingleSpectrum object to new sheet of xlsx workbook.

Parameters

• spectrum (glassware.SingleSpectrum) – spectrum, that is to be serialized

• name_template (str or string.Template) – Template that will be used to gen-
erate sheet names, defaults to “${cat}.${genre}-${det}”. Refer to make_name() doc-
umentation for details on supported placeholders.

_get_handle(template: Union[str, string.Template], template_params: dict, open_params: Optional[dict] =
None)→ Iterator[IO]

Helper method for creating files. Given additional kwargs will be passed to Path.open() method. Im-
plemented as context manager for use with with statement.

Parameters

• template (str or string.Template) – Template that will be used to generate
filenames.

• template_params (dict) – Dictionary of {identifier: value} for .make_name
method.

• open_params (dict, optional) – Arguments for Path.open() used to open file.

Yields

• IO – file handle, will be closed automatically after with statement exits

• meta public:

_iter_handles(filenames: Iterable[str], template: Union[str, string.Template], template_params: dict,
open_params: Optional[dict] = None)→ Iterator[IO]

Helper method for iteration over generated files. Given additional kwargs will be passed to Path.open()
method.

Parameters

3.8. tesliper 171

tesliper, Release 0.9.3

• filenames (list of str) – list of source filenames, used as value for ${conf} place-
holder in name_template

• template_params (dict) – Dictionary of {identifier: value} for .make_name
method.

• open_params (dict, optional) – arguments for Path.open() used to open file.

Yields

• TextIO – file handle, will be closed automatically on next iteration

• meta public:

property destination: pathlib.Path

Directory, to which generated files should be written.

Raises FileNotFoundError – If given destination doesn’t exist or is not a directory.

Type pathlib.Path

static distribute_data(data: List)→ Tuple[Dict[str, List], Dict[str, Any]]
Sorts given data by genre category for use by specialized writing methods.

Returns

• distr (dict) – Dictionary with DataArray-like objects, sorted by their type. Each
{key: value} pair is {name of the type in lowercase format: list of DataArray objects
of this type}.

• extras (dict) – Spacial-case genres: extra information used by some writer methods
when exporting data. Available {key: value} pairs (if given in data) are:

corrections: dict of {“energy genre”: FloatArray},
frequencies: Bands,
wavelengths: Bands,
excitation: Bands,
stoichiometry: InfoArray,
charge: IntegerArray,
multiplicity: IntegerArray

geometry(geometry: tesliper.glassware.arrays.Geometry, charge:
Optional[Union[tesliper.glassware.arrays.IntegerArray, Sequence[int], int]] = None, multiplicity:
Optional[Union[tesliper.glassware.arrays.IntegerArray, Sequence[int], int]] = None,
name_template: Union[str, string.Template] = '')

Interface for writing single object with geometry of each conformer. Evoked when handling Geometry
objects.

Parameters

• geometry – Positions of atoms in each conformer. Mandatory in custom implemen-
tation.

• charge – Value of each structure’s charge. Mandatory in custom implementation.

• multiplicity – Value of each structure’s multiplicity. Mandatory in custom imple-
mentation.

172 Chapter 3. References

tesliper, Release 0.9.3

• name_template – Template that defines naming scheme for files generated by this
method. May be omitted in custom implementation.

Raises NotImplementedError – Whenever called, this is an interface that should not be used
directly.

make_name(template: Union[str, string.Template], conf: str = '', num: Union[str, int] = '', genre: str = '', cat:
str = '', det: str = '', ext: str = '')→ str

Create filename using given template and given or global values for known identifiers. The identifier should
be used in the template as "${identifier}"where “identifier” is the name of identifier. Available names
and their meaning are:

${ext} - appropriate file extension
${conf} - name of the conformer
${num} - number of the file according to internal counter
${genre} - genre of exported data
${cat} - category of produced output
${det} - category-specific detail

The ${ext} identifier is filled with the value of Writers extension attribute if not explicitly given as
parameter to this method’s call. Values for other identifiers should be provided by the caller.

Parameters

• template (str or string.Template) – Template that will be used to generate
filenames. It should contain only known identifiers, listed above.

• conf (str) – value for ${conf} identifier, defaults to empty string.

• num (str or int) – value for ${str} identifier, defaults to empty string.

• genre (str) – value for ${genre} identifier, defaults to empty string.

• cat (str) – value for ${cat} identifier, defaults to empty string.

• det (str) – value for ${det} identifier, defaults to empty string.

• ext (str) – value for ${ext} identifier, defaults to empty string.

Raises ValueError – If given template or string contains any unexpected identifiers.

Examples

Must be first subclassed and instantiated:

>>> class MyWriter(WriterBase):
>>> extension = "foo"
>>> wrt = MyWriter("/path/to/some/directory/")

>>> wrt.make_name(template="somefile.${ext}")
"somefile.foo"
>>> wrt.make_name(template="${conf}.${ext}")
".foo" # conf is empty string by default
>>> wrt.make_name(template="${conf}.${ext}", conf="conformer")
"conformer.foo"

(continues on next page)

3.8. tesliper 173

tesliper, Release 0.9.3

(continued from previous page)

>>> wrt.make_name(template="Unknown_identifier_${bla}.${ext}")
Traceback (most recent call last):
ValueError: Unexpected identifiers given: bla.

property mode

Specifies how writing to file should be handled. Should be one of characters: “a”, “x”, or “w”. “a” -
append to existing file; “x” - only write if file doesn’t exist yet; “w” - overwrite file if it already exists.

Raises ValueError – If given anything other than “a”, “x”, or “w”.

transitions(transitions: tesliper.glassware.arrays.Transitions, wavelengths: tesliper.glassware.arrays.Bands,
only_highest=True, name_template: Union[str, string.Template] = '${conf}.${cat}-${det}')

Writes electronic transitions data to xlsx file (one sheet for each conformer).

Parameters

• transitions (glassware.Transitions) – Electronic transitions data that should
be serialized.

• wavelengths (glassware.ElectronicActivities) – Object containing informa-
tion about wavelength at which transitions occur.

• only_highest (bool) – Specifies if only transition of highest contribution to given
band should be reported. If False all transition are saved to file. Defaults to True.

• name_template (str or string.Template) – Template that will be used to gen-
erate filenames, defaults to “${conf}.${cat}-${det}”. Refer to make_name() docu-
mentation for details on supported placeholders.

3.9 Change Log

3.9.1 v. 0.9.3

GUI:

• Added button for recursive extraction.

Other Changes:

• Now warning will be issued after reading abnormally terminated files.

• Minor corrections in the documentation.

3.9.2 v. 0.9.2

Bug Fixes:

• Fixed __version__ and other metadata attributes broken in 0.9.1.

174 Chapter 3. References

tesliper, Release 0.9.3

3.9.3 v. 0.9.1

Bug Fixes:

• Fixed ImportError occurring in Python 3.10.

• Corrected creation of "filanemes" pseudo-genre.

• Corrected len() behavior with Spectra instances.

New Features:

• Added “top-level” temperature setting in both, API and GUI.

• Allowed ignoring of unexpected keyword arguments in Conformers.arrayed().

Other Changes:

• Moved requirements to setup.py file.

• Added tesliper-gui entry point.

• Tesliper.get_averaged_spectrum() now tries to calculate missing spectra.

• Minor supplementation to documentation and READEME.

3.9.4 v. 0.9.0

Created online documentation! Available at https://tesliper.readthedocs.io/

Bug Fixes:

• Fixed error on parsing radical molecules.

• Corrected ArrayProperty ignoring it’s .fill_value.

• Fixed infinite recursion error on SpectralData.wavelen access.

• Prevented creation of empty files on export of empty data arrays.

• Prevented intermediate .xlsx file saving when exporting multiple data genres.

• Corrected trimming abnormally terminated conformers in GUI.

New Features:

• rmsd_sieve and Conformers.trim_rmsd now allow for arbitrary windows.

• Added datawork.geometry.pyramid_windows window strategy function.

• Extended Soxhlet to allow use of arbitrary registered parsers.

• Allowed for automatic instantiation of data arrays for genres that depend on a different genre.

• Introduced optimized_geom genre

• Added export of generic data arrays.

• Added parametrization of GjfWriter.link0 commands.

Other Changes:

• Reviewed and corrected calculation of intensities.

• Improved automatic scaling of spectra.

• Renamed Parser to ParserBase for consistency with other base classes.

3.9. Change Log 175

https://tesliper.readthedocs.io/

tesliper, Release 0.9.3

• Unified base classes’ registering mechanism of their subclasses.

• Cleaned up extraction.gaussian_parser. Changed all data sequences to lists.

• Supplemented type hints.

• Renamed geometry genre to last_read_geom.

• Supplemented Conformers to fully implement OrderedDict interface.

• Added storage and serialization of experimental spectra.

GUI:

• Unified terminology used with the one in code and documentation.

3.9.5 v. 0.8.2

API:

• Corrected data export when Tesliper’s default genres used.

• Corrected error when Tesliper.calculate_spectra called with default values.

• Corrected default filenames generated for spectral data and activities.

• Supplemented genres’ full names and other metadata.

3.9.6 v. 0.8.1

API:

• Corrected handling of invalid start, stop, step parameters combination when calculating spectra.

GUI:

• Fixed incorrect floats’ rounding in numeric entries.

• Added reaction (trim conformers/redraw spectra) to “Enter” key press, when editing a numeric entry.

• Fixed an error occurring when “show activities” is checked but there are no activities in a plotting range.

• Added auto-update of energies-related values after trimming.

3.9.7 v. 0.8.0

API:

• added RMSD-based trimming of conformers with similar geometry

• added auto scaling and shifting spectra to match reference

• added support for handling and exporting electronic transitions

• added export to .gjf files

• added serialization of Tesliper class

• renamed Molecules class to Conformers

• significant changes to ...Writer classes

• significant changes to DataArray subclasses

176 Chapter 3. References

tesliper, Release 0.9.3

• major code refactoring

• many smaller changes and improvements

GUI:

• new application layout

• added scroll response to numeric fields

• changed available and default colour schemes

• supplemented data export options

3.9.8 v. 0.7.4

API:

• Tesliper’s method ‘average_spectra’ returns reference to dict of averaged spectra

GUI:

• fixed files export (broken in v. 0.7.3)

3.9.9 v. 0.7.3

API:

• introduced exceptions.py submodule

• glassware module turned into package

• improved mechanism for dealing with inconsistent data sizes

• added mechanism for trimming conformers with inconsistent data sizes

• fixed Molecules’ trim_incomplete function

• enhanced Molecules’ trim_non_matching_stoichiometry function

• introduced dict_view classes for iteration through trimmed Molecules

• improved Molecules indexing mechanism to return in O(1)

• removed ‘cpu_time’ from data extracted by gaussian_parser

• fixed error on parsing ECD calculations from g.09B

GUI:

• fixed problem with stacked spectra drawing

• added spectra reversing on demand

• fixed stacked spectra coloring

• corrected bars drawing for uv and ecd spectra

• added option for filtering conformers with inconsistent data sizes

• split un/check into separate buttons

• fixed checking/unchecking incomplete entries

• added checking/unchecking inconsistent sizes

• other minor changes and fixes

3.9. Change Log 177

tesliper, Release 0.9.3

3.9.10 v. 0.7.2

• added support for string ‘genres’ parameter in Tesliper.calculate_spectra method

• added support for .xy spectra files

• gui: fixed problem with averaged and stacked spectra drawing

• gui: set “user_home_dir/tesliper/” as default location for tslr_err_log.exe

• other minor fixes and enhancements

3.9.11 v. 0.7.1

• fixed crash on spectra drawing when Matplotlib 3 used

• fixed problem with loading spectra from some txt files

• added support for loading spectra from csv files

• other minor fixes

3.9.12 v. 0.7.0

• graphical user interface redesigned

• significant changes in code architecture

• many fixes

3.9.13 v. 0.6.4

• calculated spectra precision in txt files changed to e-4

• spectra lines width changed

• data trimming features corrected

• spectra plot erasing on session clearing implemented

• inverting x axis for uv and ecd spectra added

3.9.14 v. 0.6.3

• fixed export error when not chosen, but all data were exported

• fixed export error when export occurred after closing popup window

• fixed export error when energies were not exported to separate txt files

• entry validation improved

178 Chapter 3. References

tesliper, Release 0.9.3

3.9.15 v. 0.6.2

• solved some problems with corrupted files extraction

• added warning when files from mixed gaussian runs found

• fixed RuntimeError on overlapping actions

• fixed export popup error

• errors description moved to tslr_err_log.txt

• fixed ValueError on empty settings in gui_main.current_settings

• corrected session instantiation from files (unwanted files problem)

• changed energies precision to .6

• added Min. Boltzmann factor in GUI

3.9.16 v. 0.6.1

First beta release

3.9.17 v. 0.6.0 and earlier

Early development stages

3.10 Index

3.10. Index 179

tesliper, Release 0.9.3

180 Chapter 3. References

PYTHON MODULE INDEX

t
tesliper, 59
tesliper.datawork, 60
tesliper.datawork.atoms, 60
tesliper.datawork.energies, 61
tesliper.datawork.geometry, 63
tesliper.datawork.intensities, 68
tesliper.datawork.spectra, 70
tesliper.exceptions, 74
tesliper.extraction, 74
tesliper.extraction.gaussian_parser, 75
tesliper.extraction.parameters_parser, 79
tesliper.extraction.parser_base, 81
tesliper.extraction.soxhlet, 84
tesliper.extraction.spectra_parser, 86
tesliper.glassware, 89
tesliper.glassware.array_base, 89
tesliper.glassware.arrays, 100
tesliper.glassware.conformers, 116
tesliper.glassware.spectra, 126
tesliper.tesliper, 129
tesliper.writing, 140
tesliper.writing.csv_writer, 140
tesliper.writing.gjf_writer, 146
tesliper.writing.serializer, 153
tesliper.writing.txt_writer, 154
tesliper.writing.writer_base, 160
tesliper.writing.xlsx_writer, 169

181

tesliper, Release 0.9.3

182 Python Module Index

INDEX

Symbols
_get_handle() (tesliper.writing.csv_writer.CsvWriter

method), 141
_get_handle() (tesliper.writing.gjf_writer.GjfWriter

method), 147
_get_handle() (tesliper.writing.txt_writer.TxtWriter

method), 157
_get_handle() (tesliper.writing.writer_base.WriterBase

method), 165
_get_handle() (tesliper.writing.xlsx_writer.XlsxWriter

method), 171
_iter_handles() (tes-

liper.writing.csv_writer.CsvWriter method),
141

_iter_handles() (tesliper.writing.gjf_writer.GjfWriter
method), 147

_iter_handles() (tesliper.writing.txt_writer.TxtWriter
method), 157

_iter_handles() (tes-
liper.writing.writer_base.WriterBase method),
165

_iter_handles() (tes-
liper.writing.xlsx_writer.XlsxWriter method),
171

A
activities (tesliper.tesliper.Tesliper property), 133
add_state() (tesliper.extraction.gaussian_parser.GaussianParser

method), 78
add_state() (tesliper.extraction.parser_base.ParserBase

method), 82
add_state() (tesliper.extraction.spectra_parser.SpectraParser

method), 88
all_files (tesliper.extraction.soxhlet.Soxhlet property),

84
all_have_genres() (tes-

liper.glassware.conformers.Conformers
method), 120

ArchiveLoader (class in tesliper.writing.serializer), 154
ArchiveWriter (class in tesliper.writing.serializer), 153
ArrayBase (class in tesliper.glassware.array_base), 98
arrayed, 8

arrayed() (tesliper.glassware.conformers.Conformers
method), 119

ArrayProperty (class in tesliper.glassware.array_base),
94

as_kcal_per_mol (tesliper.glassware.arrays.Energies
property), 103

associated_genres (tes-
liper.glassware.array_base.ArrayBase prop-
erty), 99

Atom (class in tesliper.datawork.atoms), 60
atomic_number() (in module tesliper.datawork.atoms),

61
Averagable (class in tesliper.glassware.arrays), 104
average() (tesliper.glassware.spectra.Spectra method),

128
average_conformers() (tes-

liper.glassware.arrays.Averagable method),
104

average_conformers() (tes-
liper.glassware.arrays.ElectronicActivities
method), 113

average_conformers() (tes-
liper.glassware.arrays.ScatteringActivities
method), 111

average_conformers() (tes-
liper.glassware.arrays.SpectralActivities
method), 109

average_conformers() (tes-
liper.glassware.arrays.VibrationalActivities
method), 110

average_spectra() (tesliper.tesliper.Tesliper method),
137

averaged (tesliper.tesliper.Tesliper attribute), 131

B
Bands (class in tesliper.glassware.arrays), 104
BOLTZMANN (in module tesliper.datawork.energies), 62
BooleanArray (class in tesliper.glassware.arrays), 103
by_index() (tesliper.glassware.conformers.Conformers

method), 119

183

tesliper, Release 0.9.3

C
calc_rmsd() (in module tesliper.datawork.geometry), 65
calculate_average() (in module tes-

liper.datawork.spectra), 71
calculate_deltas() (in module tes-

liper.datawork.energies), 62
calculate_min_factors() (in module tes-

liper.datawork.energies), 62
calculate_populations() (in module tes-

liper.datawork.energies), 62
calculate_populations() (tes-

liper.glassware.arrays.Energies method),
104

calculate_single_spectrum() (tes-
liper.tesliper.Tesliper method), 136

calculate_spectra() (in module tes-
liper.datawork.spectra), 71

calculate_spectra() (tes-
liper.glassware.arrays.ElectronicActivities
method), 113

calculate_spectra() (tes-
liper.glassware.arrays.ScatteringActivities
method), 112

calculate_spectra() (tes-
liper.glassware.arrays.VibrationalActivities
method), 110

calculate_spectra() (tesliper.tesliper.Tesliper
method), 136

center() (in module tesliper.datawork.geometry), 65
check_input() (tesliper.glassware.array_base.ArrayProperty

method), 95
check_input() (tesliper.glassware.array_base.CollapsibleArrayProperty

method), 98
check_input() (tesliper.glassware.array_base.JaggedArrayProperty

method), 96
check_shape() (tesliper.glassware.array_base.ArrayProperty

method), 95
check_shape() (tesliper.glassware.array_base.CollapsibleArrayProperty

method), 98
check_shape() (tesliper.glassware.array_base.JaggedArrayProperty

method), 97
clear() (tesliper.glassware.conformers.Conformers

method), 117
clear() (tesliper.tesliper.Tesliper method), 132
coefficients (tesliper.glassware.arrays.Transitions

property), 115
CollapsibleArrayProperty (class in tes-

liper.glassware.array_base), 97
Conformers (class in tesliper.glassware.conformers),

116
conformers (tesliper.tesliper.Tesliper attribute), 131
contribution (tesliper.glassware.arrays.Transitions

property), 115
convert_band() (in module tesliper.datawork.spectra),

73
copy() (tesliper.glassware.conformers.Conformers

method), 117
count_imaginary() (in module tes-

liper.datawork.spectra), 70
CsvWriter (class in tesliper.writing.csv_writer), 140

D
data (tesliper.extraction.gaussian_parser.GaussianParser

attribute), 77
data array, 8
data inconsistency, 9
DataArray (class in tesliper.glassware.arrays), 100
deleter() (tesliper.glassware.array_base.ArrayProperty

method), 95
deleter() (tesliper.glassware.array_base.CollapsibleArrayProperty

method), 98
deleter() (tesliper.glassware.array_base.JaggedArrayProperty

method), 97
deltas (tesliper.glassware.arrays.Energies property),

103
DependentParameter (class in tes-

liper.glassware.array_base), 99
destination (tesliper.writing.csv_writer.CsvWriter

property), 142
destination (tesliper.writing.gjf_writer.GjfWriter prop-

erty), 148
destination (tesliper.writing.serializer.ArchiveWriter

property), 154
destination (tesliper.writing.txt_writer.TxtWriter prop-

erty), 157
destination (tesliper.writing.writer_base.WriterBase

property), 163
destination (tesliper.writing.xlsx_writer.XlsxWriter

property), 172
dialect (tesliper.writing.csv_writer.CsvWriter prop-

erty), 142
dip_to_ir() (in module tesliper.datawork.intensities),

68
dip_to_uv() (in module tesliper.datawork.intensities),

69
distribute_data() (tes-

liper.writing.csv_writer.CsvWriter static
method), 143

distribute_data() (tes-
liper.writing.gjf_writer.GjfWriter static
method), 148

distribute_data() (tes-
liper.writing.txt_writer.TxtWriter static
method), 158

distribute_data() (tes-
liper.writing.writer_base.WriterBase static
method), 163

184 Index

tesliper, Release 0.9.3

distribute_data() (tes-
liper.writing.xlsx_writer.XlsxWriter static
method), 172

drop_atoms() (in module tesliper.datawork.geometry),
64

E
ElectronicActivities (class in tes-

liper.glassware.arrays), 112
ElectronicData (class in tesliper.glassware.arrays),

108
empty (tesliper.glassware.array_base.DependentParameter

attribute), 99
Energies (class in tesliper.glassware.arrays), 103
energies (tesliper.tesliper.Tesliper property), 133
energies() (tesliper.writing.csv_writer.CsvWriter

method), 142
energies() (tesliper.writing.gjf_writer.GjfWriter

method), 148
energies() (tesliper.writing.txt_writer.TxtWriter

method), 155
energies() (tesliper.writing.writer_base.WriterBase

method), 166
energies() (tesliper.writing.xlsx_writer.XlsxWriter

method), 170
energies_order (tesliper.writing.writer_base.WriterBase

attribute), 163
ex_en (tesliper.glassware.arrays.Bands property), 105
excitation_energy (tesliper.glassware.arrays.Bands

property), 105
excited (tesliper.glassware.arrays.Transitions at-

tribute), 114
excited() (tesliper.extraction.gaussian_parser.GaussianParser

method), 78
experimental (tesliper.tesliper.Tesliper attribute), 132
export_activities() (tesliper.tesliper.Tesliper

method), 138
export_averaged() (tesliper.tesliper.Tesliper method),

139
export_data() (tesliper.tesliper.Tesliper method), 137
export_energies() (tesliper.tesliper.Tesliper method),

138
export_job_file() (tesliper.tesliper.Tesliper method),

139
export_spectra() (tesliper.tesliper.Tesliper method),

138
export_spectral_data() (tesliper.tesliper.Tesliper

method), 138
extension (tesliper.writing.writer_base.WriterBase

property), 163
extensions (tesliper.extraction.parser_base.ParserBase

property), 81
extract() (tesliper.extraction.soxhlet.Soxhlet method),

85

extract() (tesliper.tesliper.Tesliper method), 135
extract_iter() (tesliper.extraction.soxhlet.Soxhlet

method), 85
extract_iterate() (tesliper.tesliper.Tesliper method),

134

F
FilenamesArray (class in tesliper.glassware.arrays),

102
files (tesliper.extraction.soxhlet.Soxhlet property), 84
filter_files() (tesliper.extraction.soxhlet.Soxhlet

method), 85
find_atoms() (in module tesliper.datawork.geometry),

63
find_best_shape() (in module tes-

liper.glassware.array_base), 92
find_imaginary() (in module tes-

liper.datawork.spectra), 70
find_imaginary() (tesliper.glassware.arrays.Bands

method), 105
find_offset() (in module tesliper.datawork.spectra),

73
find_scaling() (in module tesliper.datawork.spectra),

73
fitting() (in module tes-

liper.extraction.parameters_parser), 80
fixed_windows() (in module tes-

liper.datawork.geometry), 66
flatten() (in module tesliper.glassware.array_base), 92
FloatArray (class in tesliper.glassware.arrays), 101
fmtparams (tesliper.writing.csv_writer.CsvWriter prop-

erty), 143
freq (tesliper.glassware.arrays.Bands property), 105
freq (tesliper.glassware.arrays.ElectronicActivities

property), 113
freq (tesliper.glassware.arrays.ElectronicData prop-

erty), 108
freq (tesliper.glassware.arrays.SpectralActivities prop-

erty), 109
freq (tesliper.glassware.arrays.SpectralData property),

106
frequencies (tesliper.glassware.arrays.Bands prop-

erty), 105
frequencies (tesliper.glassware.arrays.ElectronicActivities

property), 113
frequencies (tesliper.glassware.arrays.ElectronicData

property), 108
frequencies (tesliper.glassware.arrays.ScatteringActivities

property), 112
frequencies (tesliper.glassware.arrays.ScatteringData

property), 107
frequencies (tesliper.glassware.arrays.SpectralActivities

property), 109

Index 185

tesliper, Release 0.9.3

frequencies (tesliper.glassware.arrays.SpectralData
property), 106

frequencies (tesliper.glassware.arrays.VibrationalActivities
property), 110

frequencies (tesliper.glassware.arrays.VibrationalData
property), 107

frequencies() (tesliper.extraction.gaussian_parser.GaussianParser
method), 78

from_parameter() (tes-
liper.glassware.array_base.DependentParameter
class method), 99

fromkeys() (tesliper.glassware.conformers.Conformers
method), 124

G
gaussian() (in module tesliper.datawork.spectra), 70
GaussianParser (class in tes-

liper.extraction.gaussian_parser), 75
generic() (tesliper.writing.csv_writer.CsvWriter

method), 141
generic() (tesliper.writing.gjf_writer.GjfWriter

method), 148
generic() (tesliper.writing.txt_writer.TxtWriter

method), 155
generic() (tesliper.writing.writer_base.WriterBase

method), 166
generic() (tesliper.writing.xlsx_writer.XlsxWriter

method), 169
genre, 8
genre_getter (tesliper.glassware.array_base.DependentParameter

property), 99
Geometry (class in tesliper.glassware.arrays), 115
geometry() (tesliper.extraction.gaussian_parser.GaussianParser

method), 77
geometry() (tesliper.writing.csv_writer.CsvWriter

method), 143
geometry() (tesliper.writing.gjf_writer.GjfWriter

method), 147
geometry() (tesliper.writing.txt_writer.TxtWriter

method), 158
geometry() (tesliper.writing.writer_base.WriterBase

method), 168
geometry() (tesliper.writing.xlsx_writer.XlsxWriter

method), 172
get() (tesliper.glassware.conformers.Conformers

method), 124
get_averaged_spectrum() (tesliper.tesliper.Tesliper

method), 137
get_init_params() (tes-

liper.glassware.array_base.ArrayBase class
method), 99

get_init_params() (tesliper.glassware.arrays.Bands
class method), 105

get_init_params() (tes-
liper.glassware.arrays.BooleanArray class
method), 103

get_init_params() (tes-
liper.glassware.arrays.DataArray class
method), 100

get_init_params() (tes-
liper.glassware.arrays.ElectronicActivities
class method), 113

get_init_params() (tes-
liper.glassware.arrays.ElectronicData class
method), 108

get_init_params() (tes-
liper.glassware.arrays.Energies class method),
104

get_init_params() (tes-
liper.glassware.arrays.FilenamesArray class
method), 102

get_init_params() (tes-
liper.glassware.arrays.FloatArray class
method), 101

get_init_params() (tes-
liper.glassware.arrays.Geometry class method),
116

get_init_params() (tes-
liper.glassware.arrays.InfoArray class method),
102

get_init_params() (tes-
liper.glassware.arrays.IntegerArray class
method), 101

get_init_params() (tes-
liper.glassware.arrays.ScatteringActivities
class method), 112

get_init_params() (tes-
liper.glassware.arrays.ScatteringData class
method), 107

get_init_params() (tes-
liper.glassware.arrays.SpectralActivities
class method), 109

get_init_params() (tes-
liper.glassware.arrays.SpectralData class
method), 106

get_init_params() (tes-
liper.glassware.arrays.Transitions class
method), 115

get_init_params() (tes-
liper.glassware.arrays.VibrationalActivities
class method), 110

get_init_params() (tes-
liper.glassware.arrays.VibrationalData class
method), 107

get_repr_args() (tes-
liper.glassware.array_base.ArrayBase
method), 99

186 Index

tesliper, Release 0.9.3

get_repr_args() (tesliper.glassware.arrays.Bands
method), 105

get_repr_args() (tes-
liper.glassware.arrays.BooleanArray method),
103

get_repr_args() (tesliper.glassware.arrays.DataArray
method), 100

get_repr_args() (tes-
liper.glassware.arrays.ElectronicActivities
method), 114

get_repr_args() (tes-
liper.glassware.arrays.ElectronicData method),
108

get_repr_args() (tesliper.glassware.arrays.Energies
method), 104

get_repr_args() (tes-
liper.glassware.arrays.FilenamesArray
method), 103

get_repr_args() (tes-
liper.glassware.arrays.FloatArray method),
101

get_repr_args() (tesliper.glassware.arrays.Geometry
method), 116

get_repr_args() (tesliper.glassware.arrays.InfoArray
method), 102

get_repr_args() (tes-
liper.glassware.arrays.IntegerArray method),
101

get_repr_args() (tes-
liper.glassware.arrays.ScatteringActivities
method), 112

get_repr_args() (tes-
liper.glassware.arrays.ScatteringData method),
107

get_repr_args() (tes-
liper.glassware.arrays.SpectralActivities
method), 109

get_repr_args() (tes-
liper.glassware.arrays.SpectralData method),
106

get_repr_args() (tes-
liper.glassware.arrays.Transitions method),
115

get_repr_args() (tes-
liper.glassware.arrays.VibrationalActivities
method), 111

get_repr_args() (tes-
liper.glassware.arrays.VibrationalData
method), 107

get_triangular() (in module tes-
liper.datawork.geometry), 65

get_triangular_base() (in module tes-
liper.datawork.geometry), 65

getter() (tesliper.glassware.array_base.ArrayProperty

method), 95
getter() (tesliper.glassware.array_base.CollapsibleArrayProperty

method), 98
getter() (tesliper.glassware.array_base.JaggedArrayProperty

method), 97
GjfWriter (class in tesliper.writing.gjf_writer), 146
ground (tesliper.glassware.arrays.Transitions attribute),

114
guess_extension() (tesliper.extraction.soxhlet.Soxhlet

method), 85

H
HARTREE_TO_KCAL_PER_MOL (in module tes-

liper.datawork.energies), 62
has_any_genre() (tes-

liper.glassware.conformers.Conformers
method), 120

has_genre() (tesliper.glassware.conformers.Conformers
method), 119

highest_contribution (tes-
liper.glassware.arrays.Transitions property),
115

I
idx_offset() (in module tesliper.datawork.spectra), 72
imaginary (tesliper.glassware.arrays.Bands property),

105
inconsistency_allowed (tes-

liper.glassware.conformers.Conformers
property), 125

InconsistentDataError, 74
index_of() (tesliper.glassware.conformers.Conformers

method), 119
indices_highest (tes-

liper.glassware.arrays.Transitions property),
115

InfoArray (class in tesliper.glassware.arrays), 101
initial() (tesliper.extraction.gaussian_parser.GaussianParser

method), 77
initial() (tesliper.extraction.parser_base.ParserBase

method), 82
initial() (tesliper.extraction.spectra_parser.SpectraParser

method), 86
input_dir (tesliper.tesliper.Tesliper property), 134
IntegerArray (class in tesliper.glassware.arrays), 101
intensities (tesliper.glassware.arrays.ElectronicActivities

property), 113
intensities (tesliper.glassware.arrays.ScatteringActivities

property), 111
intensities (tesliper.glassware.arrays.SpectralActivities

property), 109
intensities (tesliper.glassware.arrays.VibrationalActivities

property), 111
InvalidElementError, 74

Index 187

tesliper, Release 0.9.3

InvalidStateError, 74
is_triangular() (in module tes-

liper.datawork.geometry), 64
items() (tesliper.glassware.conformers.Conformers

method), 124

J
JaggedArrayProperty (class in tes-

liper.glassware.array_base), 95
jsondecode() (tesliper.writing.serializer.ArchiveLoader

method), 154
jsonencode() (tesliper.writing.serializer.ArchiveWriter

method), 154

K
kabsch_rotate() (in module tes-

liper.datawork.geometry), 65
kept, 8
kept (tesliper.glassware.conformers.Conformers prop-

erty), 117
kept_items() (tesliper.glassware.conformers.Conformers

method), 124
kept_keys() (tesliper.glassware.conformers.Conformers

method), 123
kept_values() (tesliper.glassware.conformers.Conformers

method), 124
key_of() (tesliper.glassware.conformers.Conformers

method), 119
keys() (tesliper.glassware.conformers.Conformers

method), 124

L
link0 (tesliper.writing.gjf_writer.GjfWriter property),

152
load() (tesliper.tesliper.Tesliper class method), 140
load_experimental() (tesliper.tesliper.Tesliper

method), 136
load_parameters() (tesliper.tesliper.Tesliper method),

135
longest_subsequences() (in module tes-

liper.glassware.array_base), 91
lorentzian() (in module tesliper.datawork.spectra), 71

M
make_name() (tesliper.writing.csv_writer.CsvWriter

method), 143
make_name() (tesliper.writing.gjf_writer.GjfWriter

method), 149
make_name() (tesliper.writing.txt_writer.TxtWriter

method), 158
make_name() (tesliper.writing.writer_base.WriterBase

method), 164
make_name() (tesliper.writing.xlsx_writer.XlsxWriter

method), 173

mask() (in module tesliper.glassware.array_base), 92
min_factors (tesliper.glassware.arrays.Energies prop-

erty), 103
mode (tesliper.writing.csv_writer.CsvWriter property),

144
mode (tesliper.writing.gjf_writer.GjfWriter property), 150
mode (tesliper.writing.serializer.ArchiveWriter property),

153
mode (tesliper.writing.txt_writer.TxtWriter property), 159
mode (tesliper.writing.writer_base.WriterBase property),

163
mode (tesliper.writing.xlsx_writer.XlsxWriter property),

174
module

tesliper, 59
tesliper.datawork, 60
tesliper.datawork.atoms, 60
tesliper.datawork.energies, 61
tesliper.datawork.geometry, 63
tesliper.datawork.intensities, 68
tesliper.datawork.spectra, 70
tesliper.exceptions, 74
tesliper.extraction, 74
tesliper.extraction.gaussian_parser, 75
tesliper.extraction.parameters_parser, 79
tesliper.extraction.parser_base, 81
tesliper.extraction.soxhlet, 84
tesliper.extraction.spectra_parser, 86
tesliper.glassware, 89
tesliper.glassware.array_base, 89
tesliper.glassware.arrays, 100
tesliper.glassware.conformers, 116
tesliper.glassware.spectra, 126
tesliper.tesliper, 129
tesliper.writing, 140
tesliper.writing.csv_writer, 140
tesliper.writing.gjf_writer, 146
tesliper.writing.serializer, 153
tesliper.writing.txt_writer, 154
tesliper.writing.writer_base, 160
tesliper.writing.xlsx_writer, 169

move_to_end() (tesliper.glassware.conformers.Conformers
method), 117

O
offset (tesliper.glassware.spectra.SingleSpectrum prop-

erty), 127
offset (tesliper.glassware.spectra.Spectra property),

128
optimization() (tesliper.extraction.gaussian_parser.GaussianParser

method), 78
optionxform() (tesliper.extraction.parameters_parser.ParametersParser

method), 80

188 Index

tesliper, Release 0.9.3

osc_to_uv() (in module tesliper.datawork.intensities),
69

output_dir (tesliper.tesliper.Tesliper property), 134
output_files (tesliper.extraction.soxhlet.Soxhlet prop-

erty), 85
overview() (tesliper.writing.csv_writer.CsvWriter

method), 144
overview() (tesliper.writing.gjf_writer.GjfWriter

method), 150
overview() (tesliper.writing.txt_writer.TxtWriter

method), 155
overview() (tesliper.writing.writer_base.WriterBase

method), 166
overview() (tesliper.writing.xlsx_writer.XlsxWriter

method), 169

P
parameters (tesliper.extraction.parameters_parser.ParametersParser

property), 80
parameters (tesliper.tesliper.Tesliper attribute), 132
ParametersParser (class in tes-

liper.extraction.parameters_parser), 80
parse() (tesliper.extraction.gaussian_parser.GaussianParser

method), 77
parse() (tesliper.extraction.parameters_parser.ParametersParser

method), 80
parse() (tesliper.extraction.parser_base.ParserBase

method), 83
parse() (tesliper.extraction.spectra_parser.SpectraParser

method), 86
parse_csv() (tesliper.extraction.spectra_parser.SpectraParser

method), 87
parse_one() (tesliper.extraction.soxhlet.Soxhlet

method), 86
parse_spc() (tesliper.extraction.spectra_parser.SpectraParser

method), 87
parse_txt() (tesliper.extraction.spectra_parser.SpectraParser

method), 87
ParserBase (class in tesliper.extraction.parser_base),

81
pop() (tesliper.glassware.conformers.Conformers

method), 125
popitem() (tesliper.glassware.conformers.Conformers

method), 117
populations (tesliper.glassware.arrays.Energies prop-

erty), 104
primary_genres (tesliper.glassware.conformers.Conformers

attribute), 116
purpose (tesliper.extraction.parser_base.ParserBase

property), 82
pyramid_windows() (in module tes-

liper.datawork.geometry), 67

Q
quantity() (in module tes-

liper.extraction.parameters_parser), 79
quantum_software (tesliper.tesliper.Tesliper attribute),

132

R
reject_all() (tesliper.glassware.conformers.Conformers

method), 123
remove_state() (tesliper.extraction.gaussian_parser.GaussianParser

method), 78
remove_state() (tesliper.extraction.parser_base.ParserBase

method), 82
remove_state() (tesliper.extraction.spectra_parser.SpectraParser

method), 88
replace() (tesliper.glassware.array_base.DependentParameter

method), 99
rmsd_sieve() (in module tesliper.datawork.geometry),

67
rot_to_ecd() (in module tesliper.datawork.intensities),

69
rot_to_vcd() (in module tesliper.datawork.intensities),

69
route (tesliper.writing.gjf_writer.GjfWriter property),

152

S
sanitizer() (tesliper.glassware.array_base.ArrayProperty

method), 95
sanitizer() (tesliper.glassware.array_base.CollapsibleArrayProperty

method), 98
sanitizer() (tesliper.glassware.array_base.JaggedArrayProperty

method), 97
scale_to() (tesliper.glassware.spectra.SingleSpectrum

method), 127
scale_to() (tesliper.glassware.spectra.Spectra

method), 129
scaling (tesliper.glassware.spectra.SingleSpectrum

property), 127
scaling (tesliper.glassware.spectra.Spectra property),

128
ScatteringActivities (class in tes-

liper.glassware.arrays), 111
ScatteringData (class in tesliper.glassware.arrays),

107
select_all() (tesliper.glassware.conformers.Conformers

method), 123
select_atoms() (in module tes-

liper.datawork.geometry), 63
serialize() (tesliper.tesliper.Tesliper method), 139
setdefault() (tesliper.glassware.conformers.Conformers

method), 125
setter() (tesliper.glassware.array_base.ArrayProperty

method), 95

Index 189

tesliper, Release 0.9.3

setter() (tesliper.glassware.array_base.CollapsibleArrayProperty
method), 98

setter() (tesliper.glassware.array_base.JaggedArrayProperty
method), 97

shift_to() (tesliper.glassware.spectra.SingleSpectrum
method), 127

shift_to() (tesliper.glassware.spectra.Spectra
method), 129

single_spectrum() (tes-
liper.writing.csv_writer.CsvWriter method),
142

single_spectrum() (tes-
liper.writing.gjf_writer.GjfWriter method),
150

single_spectrum() (tes-
liper.writing.txt_writer.TxtWriter method),
155

single_spectrum() (tes-
liper.writing.writer_base.WriterBase method),
166

single_spectrum() (tes-
liper.writing.xlsx_writer.XlsxWriter method),
171

SingleSpectrum (class in tesliper.glassware.spectra),
126

source (tesliper.writing.serializer.ArchiveLoader prop-
erty), 154

Soxhlet (class in tesliper.extraction.soxhlet), 84
Spectra (class in tesliper.glassware.spectra), 127
spectra (tesliper.tesliper.Tesliper attribute), 131
spectra() (tesliper.writing.csv_writer.CsvWriter

method), 145
spectra() (tesliper.writing.gjf_writer.GjfWriter

method), 150
spectra() (tesliper.writing.txt_writer.TxtWriter

method), 156
spectra() (tesliper.writing.writer_base.WriterBase

method), 167
spectra() (tesliper.writing.xlsx_writer.XlsxWriter

method), 171
spectra_type (tesliper.glassware.arrays.ElectronicActivities

property), 114
spectra_type (tesliper.glassware.arrays.ElectronicData

property), 108
spectra_type (tesliper.glassware.arrays.ScatteringActivities

property), 112
spectra_type (tesliper.glassware.arrays.ScatteringData

property), 107
spectra_type (tesliper.glassware.arrays.SpectralActivities

property), 109
spectra_type (tesliper.glassware.arrays.SpectralData

property), 106
spectra_type (tesliper.glassware.arrays.VibrationalActivities

property), 111

spectra_type (tesliper.glassware.arrays.VibrationalData
property), 106

spectra_type (tesliper.glassware.spectra.SingleSpectrum
property), 127

spectra_type (tesliper.glassware.spectra.Spectra prop-
erty), 128

spectral_activities() (tes-
liper.writing.csv_writer.CsvWriter method),
142

spectral_activities() (tes-
liper.writing.gjf_writer.GjfWriter method),
151

spectral_activities() (tes-
liper.writing.txt_writer.TxtWriter method),
156

spectral_activities() (tes-
liper.writing.writer_base.WriterBase method),
167

spectral_activities() (tes-
liper.writing.xlsx_writer.XlsxWriter method),
170

spectral_data() (tes-
liper.writing.csv_writer.CsvWriter method),
145

spectral_data() (tesliper.writing.gjf_writer.GjfWriter
method), 151

spectral_data() (tesliper.writing.txt_writer.TxtWriter
method), 156

spectral_data() (tes-
liper.writing.writer_base.WriterBase method),
167

spectral_data() (tes-
liper.writing.xlsx_writer.XlsxWriter method),
170

SpectralActivities (class in tes-
liper.glassware.arrays), 108

SpectralData (class in tesliper.glassware.arrays), 105
SpectraParser (class in tes-

liper.extraction.spectra_parser), 86
standard_parameters (tesliper.tesliper.Tesliper prop-

erty), 134
state() (tesliper.extraction.gaussian_parser.GaussianParser

static method), 78
state() (tesliper.extraction.parser_base.ParserBase

static method), 83
state() (tesliper.extraction.spectra_parser.SpectraParser

static method), 88
states (tesliper.extraction.parser_base.ParserBase at-

tribute), 81
stretching_windows() (in module tes-

liper.datawork.geometry), 66
symbol_of_element() (in module tes-

liper.datawork.atoms), 60

190 Index

tesliper, Release 0.9.3

T
take_atoms() (in module tesliper.datawork.geometry),

64
temperature (tesliper.glassware.conformers.Conformers

property), 117
temperature (tesliper.tesliper.Tesliper property), 132
tesliper

module, 59
Tesliper (class in tesliper.tesliper), 130
tesliper.datawork

module, 60
tesliper.datawork.atoms

module, 60
tesliper.datawork.energies

module, 61
tesliper.datawork.geometry

module, 63
tesliper.datawork.intensities

module, 68
tesliper.datawork.spectra

module, 70
tesliper.exceptions

module, 74
tesliper.extraction

module, 74
tesliper.extraction.gaussian_parser

module, 75
tesliper.extraction.parameters_parser

module, 79
tesliper.extraction.parser_base

module, 81
tesliper.extraction.soxhlet

module, 84
tesliper.extraction.spectra_parser

module, 86
tesliper.glassware

module, 89
tesliper.glassware.array_base

module, 89
tesliper.glassware.arrays

module, 100
tesliper.glassware.conformers

module, 116
tesliper.glassware.spectra

module, 126
tesliper.tesliper

module, 129
tesliper.writing

module, 140
tesliper.writing.csv_writer

module, 140
tesliper.writing.gjf_writer

module, 146
tesliper.writing.serializer

module, 153
tesliper.writing.txt_writer

module, 154
tesliper.writing.writer_base

module, 160
tesliper.writing.xlsx_writer

module, 169
TesliperError, 74
to_masked() (in module tesliper.glassware.array_base),

93
Transitions (class in tesliper.glassware.arrays), 114
transitions() (tesliper.writing.csv_writer.CsvWriter

method), 146
transitions() (tesliper.writing.gjf_writer.GjfWriter

method), 151
transitions() (tesliper.writing.txt_writer.TxtWriter

method), 156
transitions() (tesliper.writing.writer_base.WriterBase

method), 168
transitions() (tesliper.writing.xlsx_writer.XlsxWriter

method), 174
triggers (tesliper.extraction.parser_base.ParserBase

attribute), 81
trim_imaginary_frequencies() (tes-

liper.glassware.conformers.Conformers
method), 121

trim_incomplete() (tes-
liper.glassware.conformers.Conformers
method), 120

trim_inconsistent_sizes() (tes-
liper.glassware.conformers.Conformers
method), 121

trim_non_matching_stoichiometry() (tes-
liper.glassware.conformers.Conformers
method), 121

trim_non_normal_termination() (tes-
liper.glassware.conformers.Conformers
method), 121

trim_not_optimized() (tes-
liper.glassware.conformers.Conformers
method), 121

trim_rmsd() (tesliper.glassware.conformers.Conformers
method), 122

trim_to_range() (tes-
liper.glassware.conformers.Conformers
method), 122

trimmed_to() (tesliper.glassware.conformers.Conformers
method), 125

trimming, 8
TxtWriter (class in tesliper.writing.txt_writer), 154

U
unify_abscissa() (in module tes-

liper.datawork.spectra), 72

Index 191

tesliper, Release 0.9.3

units (tesliper.glassware.spectra.SingleSpectrum prop-
erty), 127

units (tesliper.glassware.spectra.Spectra property), 128
unpack_values() (tes-

liper.glassware.arrays.Transitions static
method), 114

untrimmed (tesliper.glassware.conformers.Conformers
property), 125

update() (tesliper.glassware.conformers.Conformers
method), 119

update() (tesliper.tesliper.Tesliper method), 134

V
validate_atoms() (in module tes-

liper.datawork.atoms), 61
values (tesliper.glassware.arrays.FilenamesArray prop-

erty), 102
values (tesliper.glassware.arrays.Transitions attribute),

114
values() (tesliper.glassware.conformers.Conformers

method), 125
VibrationalActivities (class in tes-

liper.glassware.arrays), 109
VibrationalData (class in tesliper.glassware.arrays),

106

W
wait() (tesliper.extraction.gaussian_parser.GaussianParser

method), 77
wanted_files (tesliper.extraction.soxhlet.Soxhlet prop-

erty), 84
wanted_files (tesliper.tesliper.Tesliper property), 134
wavelen (tesliper.glassware.arrays.Bands property), 105
wavelen (tesliper.glassware.arrays.ScatteringActivities

property), 112
wavelen (tesliper.glassware.arrays.ScatteringData prop-

erty), 107
wavelen (tesliper.glassware.arrays.SpectralActivities

property), 109
wavelen (tesliper.glassware.arrays.SpectralData prop-

erty), 106
wavelen (tesliper.glassware.arrays.VibrationalActivities

property), 111
wavelen (tesliper.glassware.arrays.VibrationalData

property), 107
wavelengths (tesliper.glassware.arrays.Bands prop-

erty), 105
wavelengths (tesliper.glassware.arrays.ElectronicActivities

property), 114
wavelengths (tesliper.glassware.arrays.ElectronicData

property), 108
wavelengths (tesliper.glassware.arrays.ScatteringActivities

property), 112

wavelengths (tesliper.glassware.arrays.ScatteringData
property), 107

wavelengths (tesliper.glassware.arrays.SpectralActivities
property), 109

wavelengths (tesliper.glassware.arrays.SpectralData
property), 106

wavelengths (tesliper.glassware.arrays.VibrationalActivities
property), 111

wavelengths (tesliper.glassware.arrays.VibrationalData
property), 107

with_traceback() (tes-
liper.exceptions.InconsistentDataError
method), 74

with_traceback() (tes-
liper.exceptions.InvalidElementError method),
74

with_traceback() (tes-
liper.exceptions.InvalidStateError method),
74

with_traceback() (tesliper.exceptions.TesliperError
method), 74

workhorse (tesliper.extraction.gaussian_parser.GaussianParser
property), 79

workhorse (tesliper.extraction.parser_base.ParserBase
property), 82

workhorse (tesliper.extraction.spectra_parser.SpectraParser
property), 89

write() (tesliper.writing.csv_writer.CsvWriter method),
145

write() (tesliper.writing.gjf_writer.GjfWriter method),
152

write() (tesliper.writing.txt_writer.TxtWriter method),
159

write() (tesliper.writing.writer_base.WriterBase
method), 165

write() (tesliper.writing.xlsx_writer.XlsxWriter
method), 169

writer() (in module tesliper.writing.writer_base), 162
WriterBase (class in tesliper.writing.writer_base), 162

X
x (tesliper.glassware.spectra.SingleSpectrum property),

127
x (tesliper.glassware.spectra.Spectra property), 128
XlsxWriter (class in tesliper.writing.xlsx_writer), 169

Y
y (tesliper.glassware.spectra.SingleSpectrum property),

127
y (tesliper.glassware.spectra.Spectra property), 128

192 Index

	Key features
	Motivation and context
	References
	Installation
	GUI for Windows
	Install from terminal
	Requirements

	Conventions and Terms
	Reading and writing
	Handling data
	Glossary

	Graphical Interface
	Reading files
	Trimming conformers
	Trimming with sieves
	Temperature of the system
	Spectra simulation
	Comparing with experiment
	Data export
	Creating Gaussian input
	Saving session

	Scripting with tesliper
	Reading files
	Filtering conformers
	Trimming methods
	Manipulating Conformers.kept
	Trimming temporarily

	Simulating spectra
	Calculation parameters
	Activities genres
	Averaging spectra
	Temperature of the system

	Comparing with experiment
	Loading experimental spectra
	Adjusting calculated spectra

	Writing to disk
	Exporting data
	Creating input files

	Saving session for later

	Advanced guide
	Data array classes
	Creating data arrays
	Data validation
	Available data arrays
	Generic types
	Spectral data
	Other data arrays

	Writing to disk
	Writer classes
	write() and other methods
	Naming files

	Available data genres
	Math and Algorithms
	Simulation of spectra
	Gaussian fitting function
	Lorentzian fitting function

	Calculation of intensities
	Dipole strength to IR intensities
	Rotator strength to VCD intensities
	Dipole strength to UV intensities
	Rotator strength to ECD intensities
	Oscillator strength to UV intensities
	Raman/ROA intensities

	Population of conformers
	RMSD of conformers
	Finding minimized value of RMSD
	Zero-centring atomic coordinates
	Rotating with Kabsch algorithm
	Calculating RMSD of atomic positions

	Comparing conformers
	Moving window mechanism
	The sieve

	Spectra transformation
	Finding best shift
	Finding optimal scaling

	tesliper
	tesliper.datawork
	tesliper.datawork.atoms
	tesliper.datawork.energies
	tesliper.datawork.geometry
	tesliper.datawork.intensities
	tesliper.datawork.spectra

	tesliper.exceptions
	tesliper.extraction
	tesliper.extraction.gaussian_parser
	tesliper.extraction.parameters_parser
	tesliper.extraction.parser_base
	tesliper.extraction.soxhlet
	tesliper.extraction.spectra_parser

	tesliper.glassware
	tesliper.glassware.array_base
	tesliper.glassware.arrays
	tesliper.glassware.conformers
	tesliper.glassware.spectra

	tesliper.tesliper
	tesliper.writing
	tesliper.writing.csv_writer
	tesliper.writing.gjf_writer
	tesliper.writing.serializer
	tesliper.writing.txt_writer
	tesliper.writing.writer_base
	tesliper.writing.xlsx_writer

	Change Log
	v. 0.9.3
	v. 0.9.2
	v. 0.9.1
	v. 0.9.0
	v. 0.8.2
	v. 0.8.1
	v. 0.8.0
	v. 0.7.4
	v. 0.7.3
	v. 0.7.2
	v. 0.7.1
	v. 0.7.0
	v. 0.6.4
	v. 0.6.3
	v. 0.6.2
	v. 0.6.1
	v. 0.6.0 and earlier

	Index

	Python Module Index
	Index

